mirror of
https://github.com/Swiftgram/Telegram-iOS.git
synced 2025-06-16 05:55:20 +00:00
Refactoring
This commit is contained in:
parent
ca50ed466a
commit
422447656b
@ -78,7 +78,7 @@ private final class ReferenceCompareTest {
|
||||
}
|
||||
|
||||
var continueFromName: String?
|
||||
//continueFromName = "778160933443732778.json"
|
||||
//continueFromName = "569118802063655905.json"
|
||||
|
||||
let _ = await processAnimationFolderAsync(basePath: bundlePath, path: "", stopOnFailure: true, process: { path, name, alwaysDraw in
|
||||
if let continueFromNameValue = continueFromName {
|
||||
|
@ -64,7 +64,7 @@ void getGradientParameters(int numberOfColors, GradientColorSet const &colors, s
|
||||
if (location >= colorLocations[i] && location <= colorLocations[i + 1]) {
|
||||
double localLocation = 0.0;
|
||||
if (colorLocations[i] != colorLocations[i + 1]) {
|
||||
localLocation = remapDouble(location, colorLocations[i], colorLocations[i + 1], 0.0, 1.0);
|
||||
localLocation = remapFloat(location, colorLocations[i], colorLocations[i + 1], 0.0, 1.0);
|
||||
}
|
||||
color = ValueInterpolator<Color>::interpolate(gradientColors[i], gradientColors[i + 1], localLocation, std::nullopt, std::nullopt);
|
||||
break;
|
||||
@ -76,7 +76,7 @@ void getGradientParameters(int numberOfColors, GradientColorSet const &colors, s
|
||||
if (location >= alphaLocations[i] && location <= alphaLocations[i + 1]) {
|
||||
double localLocation = 0.0;
|
||||
if (alphaLocations[i] != alphaLocations[i + 1]) {
|
||||
localLocation = remapDouble(location, alphaLocations[i], alphaLocations[i + 1], 0.0, 1.0);
|
||||
localLocation = remapFloat(location, alphaLocations[i], alphaLocations[i + 1], 0.0, 1.0);
|
||||
}
|
||||
alpha = ValueInterpolator<double>::interpolate(alphaValues[i], alphaValues[i + 1], localLocation, std::nullopt, std::nullopt);
|
||||
break;
|
||||
|
@ -2,13 +2,13 @@
|
||||
|
||||
namespace lottie {
|
||||
|
||||
double remapDouble(double value, double fromLow, double fromHigh, double toLow, double toHigh) {
|
||||
float remapFloat(float value, float fromLow, float fromHigh, float toLow, float toHigh) {
|
||||
return toLow + (value - fromLow) * (toHigh - toLow) / (fromHigh - fromLow);
|
||||
}
|
||||
|
||||
double clampDouble(double value, double a, double b) {
|
||||
double minValue = a <= b ? a : b;
|
||||
double maxValue = a <= b ? b : a;
|
||||
float clampFloat(float value, float a, float b) {
|
||||
float minValue = a <= b ? a : b;
|
||||
float maxValue = a <= b ? b : a;
|
||||
return std::max(std::min(value, maxValue), minValue);
|
||||
}
|
||||
|
||||
|
@ -5,9 +5,9 @@
|
||||
|
||||
namespace lottie {
|
||||
|
||||
double remapDouble(double value, double fromLow, double fromHigh, double toLow, double toHigh);
|
||||
float remapFloat(float value, float fromLow, float fromHigh, float toLow, float toHigh);
|
||||
|
||||
double clampDouble(double value, double a, double b);
|
||||
float clampFloat(float value, float a, float b);
|
||||
|
||||
}
|
||||
|
||||
|
@ -100,8 +100,8 @@ public:
|
||||
if (to.inTangent.has_value()) {
|
||||
inTanPoint = to.inTangent.value();
|
||||
}
|
||||
double progress = remapDouble(keyTime, startTime, endTime, 0.0, 1.0);
|
||||
if (!outTanPoint.isZero() || inTanPoint != Vector2D(1.0, 1.0)) {
|
||||
double progress = remapFloat(keyTime, startTime, endTime, 0.0f, 1.0f);
|
||||
if (!outTanPoint.isZero() || inTanPoint != Vector2D(1.0f, 1.0f)) {
|
||||
/// Cubic interpolation
|
||||
progress = cubicBezierInterpolate(progress, Vector2D::Zero(), outTanPoint, inTanPoint, Vector2D(1.0, 1.0));
|
||||
}
|
||||
|
@ -176,12 +176,12 @@ Vector3D interpolate(
|
||||
return Vector3D(interpolate(from.x, to.x, amount), interpolate(from.y, to.y, amount), interpolate(from.z, to.z, amount));
|
||||
}
|
||||
|
||||
static double cubicRoot(double value) {
|
||||
static float cubicRoot(float value) {
|
||||
return pow(value, 1.0 / 3.0);
|
||||
}
|
||||
|
||||
static double SolveQuadratic(double a, double b, double c) {
|
||||
double result = (-b + sqrt((b * b) - 4 * a * c)) / (2 * a);
|
||||
static float SolveQuadratic(float a, float b, float c) {
|
||||
float result = (-b + sqrt((b * b) - 4 * a * c)) / (2 * a);
|
||||
if (isInRangeOrEqual(result, 0.0, 1.0)) {
|
||||
return result;
|
||||
}
|
||||
@ -194,35 +194,39 @@ static double SolveQuadratic(double a, double b, double c) {
|
||||
return -1.0;
|
||||
}
|
||||
|
||||
static double SolveCubic(double a, double b, double c, double d) {
|
||||
if (a == 0.0) {
|
||||
inline bool isApproximatelyEqual(float value, float other) {
|
||||
return std::abs(value - other) <= FLT_EPSILON;
|
||||
}
|
||||
|
||||
static float SolveCubic(double a, double b, double c, double d) {
|
||||
if (isApproximatelyEqual(a, 0.0f)) {
|
||||
return SolveQuadratic(b, c, d);
|
||||
}
|
||||
if (d == 0.0) {
|
||||
if (isApproximatelyEqual(d, 0.0f)) {
|
||||
return 0.0;
|
||||
}
|
||||
b /= a;
|
||||
c /= a;
|
||||
d /= a;
|
||||
double q = (3.0 * c - (b * b)) / 9.0;
|
||||
double r = (-27.0 * d + b * (9.0 * c - 2.0 * (b * b))) / 54.0;
|
||||
double disc = (q * q * q) + (r * r);
|
||||
double term1 = b / 3.0;
|
||||
float q = (3.0 * c - (b * b)) / 9.0;
|
||||
float r = (-27.0 * d + b * (9.0 * c - 2.0 * (b * b))) / 54.0;
|
||||
float disc = (q * q * q) + (r * r);
|
||||
float term1 = b / 3.0;
|
||||
|
||||
if (disc > 0.0) {
|
||||
double s = r + sqrt(disc);
|
||||
float s = r + sqrt(disc);
|
||||
s = (s < 0) ? -cubicRoot(-s) : cubicRoot(s);
|
||||
double t = r - sqrt(disc);
|
||||
float t = r - sqrt(disc);
|
||||
t = (t < 0) ? -cubicRoot(-t) : cubicRoot(t);
|
||||
|
||||
double result = -term1 + s + t;
|
||||
float result = -term1 + s + t;
|
||||
if (isInRangeOrEqual(result, 0.0, 1.0)) {
|
||||
return result;
|
||||
}
|
||||
} else if (disc == 0) {
|
||||
double r13 = (r < 0) ? -cubicRoot(-r) : cubicRoot(r);
|
||||
} else if (isApproximatelyEqual(disc, 0.0f)) {
|
||||
float r13 = (r < 0) ? -cubicRoot(-r) : cubicRoot(r);
|
||||
|
||||
double result = -term1 + 2.0 * r13;
|
||||
float result = -term1 + 2.0 * r13;
|
||||
if (isInRangeOrEqual(result, 0.0, 1.0)) {
|
||||
return result;
|
||||
}
|
||||
@ -233,11 +237,11 @@ static double SolveCubic(double a, double b, double c, double d) {
|
||||
}
|
||||
} else {
|
||||
q = -q;
|
||||
double dum1 = q * q * q;
|
||||
float dum1 = q * q * q;
|
||||
dum1 = acos(r / sqrt(dum1));
|
||||
double r13 = 2.0 * sqrt(q);
|
||||
float r13 = 2.0 * sqrt(q);
|
||||
|
||||
double result = -term1 + r13 * cos(dum1 / 3.0);
|
||||
float result = -term1 + r13 * cos(dum1 / 3.0);
|
||||
if (isInRangeOrEqual(result, 0.0, 1.0)) {
|
||||
return result;
|
||||
}
|
||||
@ -251,45 +255,45 @@ static double SolveCubic(double a, double b, double c, double d) {
|
||||
}
|
||||
}
|
||||
|
||||
return -1;
|
||||
return -1.0;
|
||||
}
|
||||
|
||||
float cubicBezierInterpolate(float value, Vector2D const &P0, Vector2D const &P1, Vector2D const &P2, Vector2D const &P3) {
|
||||
double t = 0.0;
|
||||
if (value == P0.x) {
|
||||
float t = 0.0;
|
||||
if (isApproximatelyEqual(value, P0.x)) {
|
||||
// Handle corner cases explicitly to prevent rounding errors
|
||||
t = 0.0;
|
||||
} else if (value == P3.x) {
|
||||
} else if (isApproximatelyEqual(value, P3.x)) {
|
||||
t = 1.0;
|
||||
} else {
|
||||
// Calculate t
|
||||
double a = -P0.x + 3 * P1.x - 3 * P2.x + P3.x;
|
||||
double b = 3 * P0.x - 6 * P1.x + 3 * P2.x;
|
||||
double c = -3 * P0.x + 3 * P1.x;
|
||||
double d = P0.x - value;
|
||||
double tTemp = SolveCubic(a, b, c, d);
|
||||
if (tTemp == -1.0) {
|
||||
float a = -P0.x + 3 * P1.x - 3 * P2.x + P3.x;
|
||||
float b = 3 * P0.x - 6 * P1.x + 3 * P2.x;
|
||||
float c = -3 * P0.x + 3 * P1.x;
|
||||
float d = P0.x - value;
|
||||
float tTemp = SolveCubic(a, b, c, d);
|
||||
if (isApproximatelyEqual(tTemp, -1.0f)) {
|
||||
return -1.0;
|
||||
}
|
||||
t = tTemp;
|
||||
}
|
||||
|
||||
// Calculate y from t
|
||||
double oneMinusT = 1.0 - t;
|
||||
float oneMinusT = 1.0 - t;
|
||||
return (oneMinusT * oneMinusT * oneMinusT) * P0.y + 3 * t * (oneMinusT * oneMinusT) * P1.y + 3 * (t * t) * (1 - t) * P2.y + (t * t * t) * P3.y;
|
||||
}
|
||||
|
||||
struct InterpolationPoint2D {
|
||||
InterpolationPoint2D(Vector2D const point_, double distance_) :
|
||||
InterpolationPoint2D(Vector2D const point_, float distance_) :
|
||||
point(point_), distance(distance_) {
|
||||
}
|
||||
|
||||
Vector2D point;
|
||||
double distance;
|
||||
float distance;
|
||||
};
|
||||
|
||||
namespace {
|
||||
double interpolateFloat(float value, float to, float amount) {
|
||||
float interpolateFloat(float value, float to, float amount) {
|
||||
return value + ((to - value) * amount);
|
||||
}
|
||||
}
|
||||
@ -331,14 +335,14 @@ Vector2D Vector2D::interpolate(
|
||||
return interpolate(to, amount);
|
||||
}
|
||||
|
||||
double step = 1.0 / (double)samples;
|
||||
float step = 1.0 / (float)samples;
|
||||
|
||||
std::vector<InterpolationPoint2D> points;
|
||||
points.push_back(InterpolationPoint2D(*this, 0.0));
|
||||
double totalLength = 0.0;
|
||||
float totalLength = 0.0;
|
||||
|
||||
Vector2D previousPoint = *this;
|
||||
double previousAmount = 0.0;
|
||||
float previousAmount = 0.0;
|
||||
|
||||
int closestPoint = 0;
|
||||
|
||||
@ -356,13 +360,13 @@ Vector2D Vector2D::interpolate(
|
||||
previousPoint = newPoint;
|
||||
}
|
||||
|
||||
double accurateDistance = amount * totalLength;
|
||||
float accurateDistance = amount * totalLength;
|
||||
auto point = points[closestPoint];
|
||||
|
||||
bool foundPoint = false;
|
||||
|
||||
double pointAmount = ((double)closestPoint) * step;
|
||||
double nextPointAmount = pointAmount + step;
|
||||
float pointAmount = ((float)closestPoint) * step;
|
||||
float nextPointAmount = pointAmount + step;
|
||||
|
||||
int refineIterations = 0;
|
||||
while (!foundPoint) {
|
||||
@ -372,7 +376,7 @@ Vector2D Vector2D::interpolate(
|
||||
if (nextPoint.distance < accurateDistance) {
|
||||
point = nextPoint;
|
||||
closestPoint = closestPoint + 1;
|
||||
pointAmount = ((double)closestPoint) * step;
|
||||
pointAmount = ((float)closestPoint) * step;
|
||||
nextPointAmount = pointAmount + step;
|
||||
if (closestPoint == (int)points.size()) {
|
||||
foundPoint = true;
|
||||
@ -386,14 +390,14 @@ Vector2D Vector2D::interpolate(
|
||||
continue;
|
||||
}
|
||||
point = points[closestPoint];
|
||||
pointAmount = ((double)closestPoint) * step;
|
||||
pointAmount = ((float)closestPoint) * step;
|
||||
nextPointAmount = pointAmount + step;
|
||||
continue;
|
||||
}
|
||||
|
||||
/// Now we are certain the point is the closest point under the distance
|
||||
auto pointDiff = nextPoint.distance - point.distance;
|
||||
auto proposedPointAmount = remapDouble((accurateDistance - point.distance) / pointDiff, 0.0, 1.0, pointAmount, nextPointAmount);
|
||||
auto proposedPointAmount = remapFloat((accurateDistance - point.distance) / pointDiff, 0.0, 1.0, pointAmount, nextPointAmount);
|
||||
|
||||
auto newPoint = pointOnPath(to, outTangent, inTangent, proposedPointAmount);
|
||||
auto newDistance = point.distance + point.point.distanceTo(newPoint);
|
||||
|
Loading…
x
Reference in New Issue
Block a user