#import "DCT.h" #include "DCTCommon.h" #include #define DCTSIZE 8 /* The basic DCT block is 8x8 samples */ #define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */ typedef unsigned short UDCTELEM; typedef unsigned int UDCTELEM2; typedef long JLONG; #define MULTIPLIER short /* prefer 16-bit with SIMD for parellelism */ typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */ #define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */ #define CENTERJSAMPLE 128 namespace { int flss(uint16_t val) { int bit; bit = 16; if (!val) return 0; if (!(val & 0xff00)) { bit -= 8; val <<= 8; } if (!(val & 0xf000)) { bit -= 4; val <<= 4; } if (!(val & 0xc000)) { bit -= 2; val <<= 2; } if (!(val & 0x8000)) { bit -= 1; val <<= 1; } return bit; } int compute_reciprocal(uint16_t divisor, DCTELEM *dtbl) { UDCTELEM2 fq, fr; UDCTELEM c; int b, r; if (divisor == 1) { /* divisor == 1 means unquantized, so these reciprocal/correction/shift * values will cause the C quantization algorithm to act like the * identity function. Since only the C quantization algorithm is used in * these cases, the scale value is irrelevant. */ dtbl[DCTSIZE2 * 0] = (DCTELEM)1; /* reciprocal */ dtbl[DCTSIZE2 * 1] = (DCTELEM)0; /* correction */ dtbl[DCTSIZE2 * 2] = (DCTELEM)1; /* scale */ dtbl[DCTSIZE2 * 3] = -(DCTELEM)(sizeof(DCTELEM) * 8); /* shift */ return 0; } b = flss(divisor) - 1; r = sizeof(DCTELEM) * 8 + b; fq = ((UDCTELEM2)1 << r) / divisor; fr = ((UDCTELEM2)1 << r) % divisor; c = divisor / 2; /* for rounding */ if (fr == 0) { /* divisor is power of two */ /* fq will be one bit too large to fit in DCTELEM, so adjust */ fq >>= 1; r--; } else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */ c++; } else { /* fractional part is > 0.5 */ fq++; } dtbl[DCTSIZE2 * 0] = (DCTELEM)fq; /* reciprocal */ dtbl[DCTSIZE2 * 1] = (DCTELEM)c; /* correction + roundfactor */ #ifdef WITH_SIMD dtbl[DCTSIZE2 * 2] = (DCTELEM)(1 << (sizeof(DCTELEM) * 8 * 2 - r)); /* scale */ #else dtbl[DCTSIZE2 * 2] = 1; #endif dtbl[DCTSIZE2 * 3] = (DCTELEM)r - sizeof(DCTELEM) * 8; /* shift */ if (r <= 16) return 0; else return 1; } #define DESCALE(x, n) RIGHT_SHIFT(x, n) /* Multiply a DCTELEM variable by an JLONG constant, and immediately * descale to yield a DCTELEM result. */ #define MULTIPLY(var, const) ((DCTELEM)DESCALE((var) * (const), CONST_BITS)) #define MULTIPLY16V16(var1, var2) ((var1) * (var2)) static DCTELEM std_luminance_quant_tbl[DCTSIZE2] = { 16, 11, 10, 16, 24, 40, 51, 61, 12, 12, 14, 19, 26, 58, 60, 55, 14, 13, 16, 24, 40, 57, 69, 56, 14, 17, 22, 29, 51, 87, 80, 62, 18, 22, 37, 56, 68, 109, 103, 77, 24, 35, 55, 64, 81, 104, 113, 92, 49, 64, 78, 87, 103, 121, 120, 101, 72, 92, 95, 98, 112, 100, 103, 99 }; int jpeg_quality_scaling(int quality) /* Convert a user-specified quality rating to a percentage scaling factor * for an underlying quantization table, using our recommended scaling curve. * The input 'quality' factor should be 0 (terrible) to 100 (very good). */ { /* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */ if (quality <= 0) quality = 1; if (quality > 100) quality = 100; /* The basic table is used as-is (scaling 100) for a quality of 50. * Qualities 50..100 are converted to scaling percentage 200 - 2*Q; * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table * to make all the table entries 1 (hence, minimum quantization loss). * Qualities 1..50 are converted to scaling percentage 5000/Q. */ if (quality < 50) quality = 5000 / quality; else quality = 200 - quality * 2; return quality; } void jpeg_add_quant_table(DCTELEM *qtable, DCTELEM *basicTable, int scale_factor, bool forceBaseline) /* Define a quantization table equal to the basic_table times * a scale factor (given as a percentage). * If force_baseline is TRUE, the computed quantization table entries * are limited to 1..255 for JPEG baseline compatibility. */ { int i; long temp; for (i = 0; i < DCTSIZE2; i++) { temp = ((long)basicTable[i] * scale_factor + 50L) / 100L; /* limit the values to the valid range */ if (temp <= 0L) temp = 1L; if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */ if (forceBaseline && temp > 255L) temp = 255L; /* limit to baseline range if requested */ qtable[i] = (uint16_t)temp; } } void jpeg_set_quality(DCTELEM *qtable, int quality) /* Set or change the 'quality' (quantization) setting, using default tables. * This is the standard quality-adjusting entry point for typical user * interfaces; only those who want detailed control over quantization tables * would use the preceding three routines directly. */ { /* Convert user 0-100 rating to percentage scaling */ quality = jpeg_quality_scaling(quality); /* Set up standard quality tables */ jpeg_add_quant_table(qtable, std_luminance_quant_tbl, quality, false); } void getDivisors(DCTELEM *dtbl, DCTELEM *qtable) { #define CONST_BITS 14 #define RIGHT_SHIFT(x, shft) ((x) >> (shft)) static const int16_t aanscales[DCTSIZE2] = { /* precomputed values scaled up by 14 bits */ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 }; for (int i = 0; i < DCTSIZE2; i++) { if (!compute_reciprocal( DESCALE(MULTIPLY16V16((JLONG)qtable[i], (JLONG)aanscales[i]), CONST_BITS - 3), &dtbl[i])) { } } } void quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) { int i; DCTELEM temp; JCOEFPTR output_ptr = coef_block; UDCTELEM recip, corr; int shift; UDCTELEM2 product; for (i = 0; i < DCTSIZE2; i++) { temp = workspace[i]; recip = divisors[i + DCTSIZE2 * 0]; corr = divisors[i + DCTSIZE2 * 1]; shift = divisors[i + DCTSIZE2 * 3]; if (temp < 0) { temp = -temp; product = (UDCTELEM2)(temp + corr) * recip; product >>= shift + sizeof(DCTELEM) * 8; temp = (DCTELEM)product; temp = -temp; } else { product = (UDCTELEM2)(temp + corr) * recip; product >>= shift + sizeof(DCTELEM) * 8; temp = (DCTELEM)product; } output_ptr[i] = (JCOEF)temp; } } void generateForwardDctData(int quality, std::vector &data) { data.resize(DCTSIZE2 * 4 * sizeof(DCTELEM)); DCTELEM qtable[DCTSIZE2]; jpeg_set_quality(qtable, quality); getDivisors((DCTELEM *)data.data(), qtable); } void generateInverseDctData(int quality, std::vector &data) { data.resize(DCTSIZE2 * sizeof(IFAST_MULT_TYPE)); IFAST_MULT_TYPE *ifmtbl = (IFAST_MULT_TYPE *)data.data(); DCTELEM qtable[DCTSIZE2]; jpeg_set_quality(qtable, quality); #define CONST_BITS 14 static const int16_t aanscales[DCTSIZE2] = { /* precomputed values scaled up by 14 bits */ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 }; for (int i = 0; i < DCTSIZE2; i++) { ifmtbl[i] = (IFAST_MULT_TYPE) DESCALE(MULTIPLY16V16((JLONG)qtable[i], (JLONG)aanscales[i]), CONST_BITS - IFAST_SCALE_BITS); } } static const int zigZagInv[DCTSIZE2] = { 0,1,8,16,9,2,3,10, 17,24,32,25,18,11,4,5, 12,19,26,33,40,48,41,34, 27,20,13,6,7,14,21,28, 35,42,49,56,57,50,43,36, 29,22,15,23,30,37,44,51, 58,59,52,45,38,31,39,46, 53,60,61,54,47,55,62,63 }; static const int zigZag[DCTSIZE2] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63 }; void performForwardDct(uint8_t const *pixels, int16_t *coefficients, int width, int height, int bytesPerRow, DCTELEM *divisors) { DCTELEM block[DCTSIZE2]; JCOEF coefBlock[DCTSIZE2]; for (int y = 0; y < height; y += DCTSIZE) { for (int x = 0; x < width; x += DCTSIZE) { for (int blockY = 0; blockY < DCTSIZE; blockY++) { for (int blockX = 0; blockX < DCTSIZE; blockX++) { block[blockY * DCTSIZE + blockX] = ((DCTELEM)pixels[(y + blockY) * bytesPerRow + (x + blockX)]) - CENTERJSAMPLE; } } dct_jpeg_fdct_ifast(block); quantize(coefBlock, divisors, block); for (int blockY = 0; blockY < DCTSIZE; blockY++) { for (int blockX = 0; blockX < DCTSIZE; blockX++) { coefficients[(y + blockY) * bytesPerRow + (x + blockX)] = coefBlock[zigZagInv[blockY * DCTSIZE + blockX]]; } } } } } void performInverseDct(int16_t const * coefficients, uint8_t *pixels, int width, int height, int coefficientsPerRow, int bytesPerRow, DctAuxiliaryData *auxiliaryData, IFAST_MULT_TYPE *ifmtbl) { DCTELEM coefficientBlock[DCTSIZE2]; JSAMPLE pixelBlock[DCTSIZE2]; for (int y = 0; y < height; y += DCTSIZE) { for (int x = 0; x < width; x += DCTSIZE) { for (int blockY = 0; blockY < DCTSIZE; blockY++) { for (int blockX = 0; blockX < DCTSIZE; blockX++) { coefficientBlock[zigZag[blockY * DCTSIZE + blockX]] = coefficients[(y + blockY) * coefficientsPerRow + (x + blockX)]; } } dct_jpeg_idct_ifast(auxiliaryData, ifmtbl, coefficientBlock, pixelBlock); for (int blockY = 0; blockY < DCTSIZE; blockY++) { for (int blockX = 0; blockX < DCTSIZE; blockX++) { pixels[(y + blockY) * bytesPerRow + (x + blockX)] = pixelBlock[blockY * DCTSIZE + blockX]; } } } } } } namespace dct { class DCTInternal { public: DCTInternal(int quality) { auxiliaryData = createDctAuxiliaryData(); generateForwardDctData(quality, forwardDctData); generateInverseDctData(quality, inverseDctData); } ~DCTInternal() { freeDctAuxiliaryData(auxiliaryData); } public: struct DctAuxiliaryData *auxiliaryData = nullptr; std::vector forwardDctData; std::vector inverseDctData; }; DCT::DCT(int quality) { _internal = new DCTInternal(quality); } DCT::~DCT() { delete _internal; } void DCT::forward(uint8_t const *pixels, int16_t *coefficients, int width, int height, int bytesPerRow) { performForwardDct(pixels, coefficients, width, height, bytesPerRow, (DCTELEM *)_internal->forwardDctData.data()); } void DCT::inverse(int16_t const *coefficients, uint8_t *pixels, int width, int height, int coefficientsPerRow, int bytesPerRow) { performInverseDct(coefficients, pixels, width, height, coefficientsPerRow, bytesPerRow, _internal->auxiliaryData, (IFAST_MULT_TYPE *)_internal->inverseDctData.data()); } }