/* * This is the source code of Telegram for iOS v. 1.1 * It is licensed under GNU GPL v. 2 or later. * You should have received a copy of the license in this archive (see LICENSE). * * Copyright Peter Iakovlev, 2013. */ #import #import #import #import #import #include #include #include #include #include #include #include #include #include NSData *MTSha1(NSData *data) { uint8_t digest[20]; CC_SHA1(data.bytes, (CC_LONG)data.length, digest); return [[NSData alloc] initWithBytes:digest length:20]; } NSData *MTSubdataSha1(NSData *data, NSUInteger offset, NSUInteger length) { uint8_t digest[20]; CC_SHA1(((uint8_t *)data.bytes) + offset, (CC_LONG)length, digest); return [[NSData alloc] initWithBytes:digest length:20]; } NSData *MTSha256(NSData *data) { uint8_t digest[CC_SHA256_DIGEST_LENGTH]; CC_SHA256(data.bytes, (CC_LONG)data.length, digest); return [[NSData alloc] initWithBytes:digest length:CC_SHA256_DIGEST_LENGTH]; } #if defined(_MSC_VER) #define FORCE_INLINE __forceinline #include #define ROTL32(x,y) _rotl(x,y) #define ROTL64(x,y) _rotl64(x,y) #define BIG_CONSTANT(x) (x) // Other compilers #else // defined(_MSC_VER) #define FORCE_INLINE __attribute__((always_inline)) static inline uint32_t rotl32 ( uint32_t x, int8_t r ) { return (x << r) | (x >> (32 - r)); } static inline uint64_t rotl64 ( uint64_t x, int8_t r ) { return (x << r) | (x >> (64 - r)); } #define ROTL32(x,y) rotl32(x,y) #define ROTL64(x,y) rotl64(x,y) #define BIG_CONSTANT(x) (x##LLU) #endif // !defined(_MSC_VER) //----------------------------------------------------------------------------- // Block read - if your platform needs to do endian-swapping or can only // handle aligned reads, do the conversion here static FORCE_INLINE uint32_t getblock ( const uint32_t * p, int i ) { return p[i]; } //----------------------------------------------------------------------------- // Finalization mix - force all bits of a hash block to avalanche static FORCE_INLINE uint32_t fmix ( uint32_t h ) { h ^= h >> 16; h *= 0x85ebca6b; h ^= h >> 13; h *= 0xc2b2ae35; h ^= h >> 16; return h; } //---------- static void MurmurHash3_x86_32 ( const void * key, int len, uint32_t seed, void * out ) { const uint8_t * data = (const uint8_t*)key; const int nblocks = len / 4; uint32_t h1 = seed; const uint32_t c1 = 0xcc9e2d51; const uint32_t c2 = 0x1b873593; //---------- // body const uint32_t * blocks = (const uint32_t *)(data + nblocks*4); for(int i = -nblocks; i; i++) { uint32_t k1 = getblock(blocks,i); k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1; h1 = ROTL32(h1,13); h1 = h1*5+0xe6546b64; } //---------- // tail const uint8_t * tail = (const uint8_t*)(data + nblocks*4); uint32_t k1 = 0; switch(len & 3) { case 3: k1 ^= tail[2] << 16; case 2: k1 ^= tail[1] << 8; case 1: k1 ^= tail[0]; k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1; }; //---------- // finalization h1 ^= len; h1 = fmix(h1); *(uint32_t*)out = h1; } int32_t MTMurMurHash32(const void *bytes, int length) { int32_t result = 0; MurmurHash3_x86_32(bytes, length, -137723950, &result); return result; } void MTAesEncryptInplace(NSMutableData *data, NSData *key, NSData *iv) { AES_KEY aesKey; AES_set_encrypt_key(key.bytes, 256, &aesKey); unsigned char aesIv[AES_BLOCK_SIZE * 2]; memcpy(aesIv, iv.bytes, iv.length); AES_ige_encrypt(data.bytes, (void *)data.bytes, data.length, &aesKey, aesIv, true); } void MTAesEncryptInplaceAndModifyIv(NSMutableData *data, NSData *key, NSMutableData *iv) { AES_KEY aesKey; AES_set_encrypt_key(key.bytes, 256, &aesKey); AES_ige_encrypt(data.bytes, (void *)data.bytes, data.length, &aesKey, iv.mutableBytes, true); } void MTAesDecryptInplace(NSMutableData *data, NSData *key, NSData *iv) { AES_KEY aesKey; AES_set_decrypt_key(key.bytes, 256, &aesKey); unsigned char aesIv[AES_BLOCK_SIZE * 2]; memcpy(aesIv, iv.bytes, iv.length); AES_ige_encrypt(data.bytes, (void *)data.bytes, data.length, &aesKey, aesIv, false); } void MTAesDecryptInplaceAndModifyIv(NSMutableData *data, NSData *key, NSMutableData *iv) { AES_KEY aesKey; AES_set_decrypt_key(key.bytes, 256, &aesKey); AES_ige_encrypt(data.bytes, (void *)data.bytes, data.length, &aesKey, iv.mutableBytes, false); } NSData *MTAesEncrypt(NSData *data, NSData *key, NSData *iv) { if (key == nil || iv == nil) { MTLog(@"***** MTAesEncrypt: empty key or iv"); return nil; } AES_KEY aesKey; AES_set_encrypt_key(key.bytes, 256, &aesKey); unsigned char aesIv[AES_BLOCK_SIZE * 2]; memcpy(aesIv, iv.bytes, iv.length); uint8_t *resultBytes = malloc(data.length); AES_ige_encrypt(data.bytes, resultBytes, data.length, &aesKey, aesIv, true); return [[NSData alloc] initWithBytesNoCopy:resultBytes length:data.length freeWhenDone:true]; } NSData *MTAesDecrypt(NSData *data, NSData *key, NSData *iv) { if (key == nil || iv == nil) { MTLog(@"***** MTAesEncrypt: empty key or iv"); return nil; } AES_KEY aesKey; AES_set_decrypt_key(key.bytes, 256, &aesKey); unsigned char aesIv[AES_BLOCK_SIZE * 2]; memcpy(aesIv, iv.bytes, iv.length); uint8_t *resultBytes = malloc(data.length); AES_ige_encrypt(data.bytes, resultBytes, data.length, &aesKey, aesIv, false); return [[NSData alloc] initWithBytesNoCopy:resultBytes length:data.length freeWhenDone:true]; } NSData *MTRsaEncrypt(NSString *publicKey, NSData *data) { BIO *keyBio = BIO_new(BIO_s_mem()); const char *keyData = [publicKey UTF8String]; BIO_write(keyBio, keyData, (int)publicKey.length); RSA *rsaKey = PEM_read_bio_RSAPublicKey(keyBio, NULL, NULL, NULL); BIO_free(keyBio); BN_CTX *ctx = BN_CTX_new(); BIGNUM *a = BN_bin2bn(data.bytes, (int)data.length, NULL); BIGNUM *r = BN_new(); BN_mod_exp(r, a, rsaKey->e, rsaKey->n, ctx); unsigned char *res = malloc((size_t)BN_num_bytes(r)); int resLen = BN_bn2bin(r, res); BN_CTX_free(ctx); BN_free(a); BN_free(r); RSA_free(rsaKey); NSData *result = [[NSData alloc] initWithBytesNoCopy:res length:(NSUInteger)resLen freeWhenDone:true]; return result; } NSData *MTExp(NSData *base, NSData *exp, NSData *modulus) { BN_CTX *ctx = BN_CTX_new(); BIGNUM *bnBase = BN_bin2bn(base.bytes, (int)base.length, NULL); BIGNUM *bnExp = BN_bin2bn(exp.bytes, (int)exp.length, NULL); BIGNUM *bnModulus = BN_bin2bn(modulus.bytes, (int)modulus.length, NULL); BIGNUM *bnRes = BN_new(); BN_mod_exp(bnRes, bnBase, bnExp, bnModulus, ctx); unsigned char *res = malloc((size_t)BN_num_bytes(bnRes)); int resLen = BN_bn2bin(bnRes, res); BN_CTX_free(ctx); BN_free(bnBase); BN_free(bnExp); BN_free(bnModulus); BN_free(bnRes); NSData *result = [[NSData alloc] initWithBytes:res length:(NSUInteger)resLen]; free(res); return result; } static inline uint64_t mygcd(uint64_t a, uint64_t b) { while (a != 0 && b != 0) { while ((b & 1) == 0) { b >>= 1; } while ((a & 1) == 0) { a >>= 1; } if (a > b) a -= b; else b -= a; } return b == 0 ? a : b; } bool MTFactorize(uint64_t what, uint64_t *resA, uint64_t *resB) { int it = 0; uint64_t g = 0; for (int i = 0; i < 3 || it < 1000; i++) { int q = ((lrand48() & 15) + 17) % what; uint64_t x = (uint64_t)lrand48 () % (what - 1) + 1, y = x; int lim = 1 << (i + 18); int j; for (j = 1; j < lim; j++) { ++it; unsigned long long a = x, b = x, c = (unsigned long long)q; while (b) { if (b & 1) { c += a; if (c >= what) { c -= what; } } a += a; if (a >= what) { a -= what; } b >>= 1; } x = c; unsigned long long z = x < y ? what + x - y : x - y; g = mygcd(z, what); if (g != 1) { break; } if (!(j & (j - 1))) { y = x; } } if (g > 1 && g < what) break; } if (g > 1 && g < what) { uint64_t p1 = g; uint64_t p2 = what / g; if (p1 > p2) { uint64_t tmp = p1; p1 = p2; p2 = tmp; } if (resA != NULL) *resA = p1; if (resB != NULL) *resB = p2; return true; } else { MTLog(@"Factorization failed for %lld", (long long int)what); return false; } } bool MTCheckIsSafeG(unsigned int g) { return g >= 2 && g <= 7; } static NSString *hexStringFromData(NSData *data) { NSMutableString *string = [[NSMutableString alloc] initWithCapacity:data.length * 2]; for (NSUInteger i = 0; i < data.length; i++) { [string appendFormat:@"%02x", ((uint8_t *)data.bytes)[i]]; } return string; } bool MTCheckIsSafePrime(NSData *numberBytes, MTKeychain *keychain) { NSString *primeKey = [[NSString alloc] initWithFormat:@"isPrimeSafe_%@", hexStringFromData(numberBytes)]; NSNumber *nCachedResult = [keychain objectForKey:primeKey group:@"primes"]; if (nCachedResult != nil) return [nCachedResult boolValue]; if (numberBytes.length != 256) { [[NSUserDefaults standardUserDefaults] setObject:[[NSNumber alloc] initWithBool:false] forKey:primeKey]; [[NSUserDefaults standardUserDefaults] synchronize]; return false; } if (!(((uint8_t *)numberBytes.bytes)[0] & (1 << 7))) { [[NSUserDefaults standardUserDefaults] setObject:[[NSNumber alloc] initWithBool:false] forKey:primeKey]; [[NSUserDefaults standardUserDefaults] synchronize]; return false; } unsigned char goodPrime0[] = { 0xc7, 0x1c, 0xae, 0xb9, 0xc6, 0xb1, 0xc9, 0x04, 0x8e, 0x6c, 0x52, 0x2f, 0x70, 0xf1, 0x3f, 0x73, 0x98, 0x0d, 0x40, 0x23, 0x8e, 0x3e, 0x21, 0xc1, 0x49, 0x34, 0xd0, 0x37, 0x56, 0x3d, 0x93, 0x0f, 0x48, 0x19, 0x8a, 0x0a, 0xa7, 0xc1, 0x40, 0x58, 0x22, 0x94, 0x93, 0xd2, 0x25, 0x30, 0xf4, 0xdb, 0xfa, 0x33, 0x6f, 0x6e, 0x0a, 0xc9, 0x25, 0x13, 0x95, 0x43, 0xae, 0xd4, 0x4c, 0xce, 0x7c, 0x37, 0x20, 0xfd, 0x51, 0xf6, 0x94, 0x58, 0x70, 0x5a, 0xc6, 0x8c, 0xd4, 0xfe, 0x6b, 0x6b, 0x13, 0xab, 0xdc, 0x97, 0x46, 0x51, 0x29, 0x69, 0x32, 0x84, 0x54, 0xf1, 0x8f, 0xaf, 0x8c, 0x59, 0x5f, 0x64, 0x24, 0x77, 0xfe, 0x96, 0xbb, 0x2a, 0x94, 0x1d, 0x5b, 0xcd, 0x1d, 0x4a, 0xc8, 0xcc, 0x49, 0x88, 0x07, 0x08, 0xfa, 0x9b, 0x37, 0x8e, 0x3c, 0x4f, 0x3a, 0x90, 0x60, 0xbe, 0xe6, 0x7c, 0xf9, 0xa4, 0xa4, 0xa6, 0x95, 0x81, 0x10, 0x51, 0x90, 0x7e, 0x16, 0x27, 0x53, 0xb5, 0x6b, 0x0f, 0x6b, 0x41, 0x0d, 0xba, 0x74, 0xd8, 0xa8, 0x4b, 0x2a, 0x14, 0xb3, 0x14, 0x4e, 0x0e, 0xf1, 0x28, 0x47, 0x54, 0xfd, 0x17, 0xed, 0x95, 0x0d, 0x59, 0x65, 0xb4, 0xb9, 0xdd, 0x46, 0x58, 0x2d, 0xb1, 0x17, 0x8d, 0x16, 0x9c, 0x6b, 0xc4, 0x65, 0xb0, 0xd6, 0xff, 0x9c, 0xa3, 0x92, 0x8f, 0xef, 0x5b, 0x9a, 0xe4, 0xe4, 0x18, 0xfc, 0x15, 0xe8, 0x3e, 0xbe, 0xa0, 0xf8, 0x7f, 0xa9, 0xff, 0x5e, 0xed, 0x70, 0x05, 0x0d, 0xed, 0x28, 0x49, 0xf4, 0x7b, 0xf9, 0x59, 0xd9, 0x56, 0x85, 0x0c, 0xe9, 0x29, 0x85, 0x1f, 0x0d, 0x81, 0x15, 0xf6, 0x35, 0xb1, 0x05, 0xee, 0x2e, 0x4e, 0x15, 0xd0, 0x4b, 0x24, 0x54, 0xbf, 0x6f, 0x4f, 0xad, 0xf0, 0x34, 0xb1, 0x04, 0x03, 0x11, 0x9c, 0xd8, 0xe3, 0xb9, 0x2f, 0xcc, 0x5b }; if (memcmp(goodPrime0, numberBytes.bytes, 256) == 0) return true; BN_CTX *ctx = BN_CTX_new(); BIGNUM *bnNumber = BN_bin2bn(numberBytes.bytes, (int)numberBytes.length, NULL); int result = BN_is_prime_ex(bnNumber, 30, ctx, NULL); if (result == 1) { BIGNUM *bnNumberMinus1 = BN_new(); BN_sub(bnNumberMinus1, bnNumber, BN_value_one()); BIGNUM *bnNumberMinus1DivBy2 = BN_new(); BN_rshift1(bnNumberMinus1DivBy2, bnNumberMinus1); result = BN_is_prime_ex(bnNumberMinus1DivBy2, 30, ctx, NULL); BN_free(bnNumberMinus1); BN_free(bnNumberMinus1DivBy2); } BN_free(bnNumber); BN_CTX_free(ctx); [keychain setObject:@(result == 1) forKey:primeKey group:@"primes"]; return result == 1; } bool MTCheckIsSafeGAOrB(NSData *gAOrB, NSData *p) { BN_CTX *ctx = BN_CTX_new(); BIGNUM *bnNumber = BN_bin2bn(gAOrB.bytes, (int)gAOrB.length, NULL); BIGNUM *bnP = BN_bin2bn(p.bytes, (int)p.length, NULL); bool result = false; if (BN_cmp(bnNumber, BN_value_one()) == 1) { BIGNUM *pMinus1 = BN_new(); BN_sub(pMinus1, bnP, BN_value_one()); if (BN_cmp(bnNumber, pMinus1) == -1) { result = true; } BN_free(pMinus1); } BN_free(bnNumber); BN_free(bnP); BN_CTX_free(ctx); return result; } bool MTCheckMod(NSData *numberBytes, unsigned int g, MTKeychain *keychain) { NSString *modKey = [[NSString alloc] initWithFormat:@"isPrimeModSafe_%@_%d", hexStringFromData(numberBytes), g]; NSNumber *nCachedResult = [keychain objectForKey:modKey group:@"primes"]; if (nCachedResult != nil) return [nCachedResult boolValue]; BN_CTX *ctx = BN_CTX_new(); BIGNUM *bnNumber = BN_bin2bn(numberBytes.bytes, (int)numberBytes.length, NULL); bool result = false; switch (g) { case 2: { BN_ULONG modResult = BN_mod_word(bnNumber, 8); result = modResult == 7; break; } case 3: { BN_ULONG modResult = BN_mod_word(bnNumber, 3); result = modResult == 2; break; } case 4: { result = true; break; } case 5: { BN_ULONG modResult = BN_mod_word(bnNumber, 5); result = modResult == 1 || modResult == 4; break; } case 6: { BN_ULONG modResult = BN_mod_word(bnNumber, 24); result = modResult == 19 || modResult == 23; break; } case 7: { BN_ULONG modResult = BN_mod_word(bnNumber, 7); result = modResult == 3 || modResult == 5 || modResult == 6; break; } default: break; } BN_free(bnNumber); BN_CTX_free(ctx); [keychain setObject:@(result) forKey:modKey group:@"primes"]; return result; }