#include using namespace metal; typedef struct { packed_float2 position; } Vertex; struct RasterizerData { float4 position [[position]]; }; vertex RasterizerData cameraBlobVertex ( constant Vertex *vertexArray[[buffer(0)]], uint vertexID [[ vertex_id ]] ) { RasterizerData out; out.position = vector_float4(vertexArray[vertexID].position[0], vertexArray[vertexID].position[1], 0.0, 1.0); return out; } #define BindingDistance 0.25 #define AARadius 2.0 float smin(float a, float b, float k) { float h = clamp(0.5 + 0.5 * (a - b) / k, 0.0, 1.0); return mix(a, b, h) - k * h * (1.0 - h); } float sdfRoundedRectangle(float2 uv, float2 position, float size, float radius) { float2 q = abs(uv - position) - size + radius; return length(max(q, 0.0)) + min(max(q.x, q.y), 0.0) - radius; } float sdfCircle(float2 uv, float2 position, float radius) { return length(uv - position) - radius; } float map(float2 uv, float3 primaryParameters, float2 primaryOffset, float3 secondaryParameters, float2 secondaryOffset) { float primary = sdfRoundedRectangle(uv, primaryOffset, primaryParameters.x, primaryParameters.z); float secondary = sdfCircle(uv, secondaryOffset, secondaryParameters.x); float metaballs = 1.0; metaballs = smin(metaballs, primary, BindingDistance); metaballs = smin(metaballs, secondary, BindingDistance); return metaballs; } fragment half4 cameraBlobFragment(RasterizerData in[[stage_in]], constant uint2 &resolution[[buffer(0)]], constant float3 &primaryParameters[[buffer(1)]], constant float2 &primaryOffset[[buffer(2)]], constant float3 &secondaryParameters[[buffer(3)]], constant float2 &secondaryOffset[[buffer(4)]]) { float2 R = float2(resolution.x, resolution.y); float2 uv; float offset; if (R.x > R.y) { uv = (2.0 * in.position.xy - R.xy) / R.y; offset = uv.x; } else { uv = (2.0 * in.position.xy - R.xy) / R.x; offset = uv.y; } float t = AARadius / resolution.y; float cAlpha = min(1.0, 1.0 - primaryParameters.y); float minColor = min(1.0, 1.0 + primaryParameters.y); float bound = primaryParameters.x + 0.05; if (abs(offset) > bound) { cAlpha = mix(0.0, 1.0, min(1.0, (abs(offset) - bound) * 2.4)); } float c = smoothstep(t, -t, map(uv, primaryParameters, primaryOffset, secondaryParameters, secondaryOffset)); return half4(min(minColor, c), min(minColor, max(cAlpha, 0.231)), min(minColor, max(cAlpha, 0.188)), c); } struct Rectangle { float2 origin; float2 size; }; constant static float2 quadVertices[6] = { float2(0.0, 0.0), float2(1.0, 0.0), float2(0.0, 1.0), float2(1.0, 0.0), float2(0.0, 1.0), float2(1.0, 1.0) }; struct QuadVertexOut { float4 position [[position]]; float2 uv; }; kernel void videoBiPlanarToRGBA( texture2d inTextureY [[ texture(0) ]], texture2d inTextureUV [[ texture(1) ]], texture2d outTexture [[ texture(2) ]], uint2 threadPosition [[ thread_position_in_grid ]] ) { half y = inTextureY.read(threadPosition).r; half2 uv = inTextureUV.read(uint2(threadPosition.x / 2, threadPosition.y / 2)).rg - half2(0.5, 0.5); half4 color(y + 1.403 * uv.y, y - 0.344 * uv.x - 0.714 * uv.y, y + 1.770 * uv.x, 1.0); outTexture.write(color, threadPosition); } kernel void videoTriPlanarToRGBA( texture2d inTextureY [[ texture(0) ]], texture2d inTextureU [[ texture(1) ]], texture2d inTextureV [[ texture(2) ]], texture2d outTexture [[ texture(3) ]], uint2 threadPosition [[ thread_position_in_grid ]] ) { half y = inTextureY.read(threadPosition).r; uint2 uvPosition = uint2(threadPosition.x / 2, threadPosition.y / 2); half2 inUV = (inTextureU.read(uvPosition).r, inTextureV.read(uvPosition).r); half2 uv = inUV - half2(0.5, 0.5); half4 color(y + 1.403 * uv.y, y - 0.344 * uv.x - 0.714 * uv.y, y + 1.770 * uv.x, 1.0); outTexture.write(color, threadPosition); } vertex QuadVertexOut mainVideoVertex( const device Rectangle &rect [[ buffer(0) ]], const device uint2 &mirror [[ buffer(1) ]], unsigned int vid [[ vertex_id ]] ) { float2 quadVertex = quadVertices[vid]; QuadVertexOut out; out.position = float4(rect.origin.x + quadVertex.x * rect.size.x, rect.origin.y + quadVertex.y * rect.size.y, 0.0, 1.0); out.position.x = -1.0 + out.position.x * 2.0; out.position.y = -1.0 + out.position.y * 2.0; float2 uv = float2(quadVertex.x, 1.0 - quadVertex.y); out.uv = float2(uv.y, 1.0 - uv.x); if (mirror.x == 1) { out.uv.x = 1.0 - out.uv.x; } if (mirror.y == 1) { out.uv.y = 1.0 - out.uv.y; } return out; } half4 rgb2hsv(half4 c) { half4 K = half4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0); half4 p = mix(half4(c.bg, K.wz), half4(c.gb, K.xy), step(c.b, c.g)); half4 q = mix(half4(p.xyw, c.r), half4(c.r, p.yzx), step(p.x, c.r)); float d = q.x - min(q.w, q.y); float e = 1.0e-10; return half4(abs(q.z + (q.w - q.y) / (6.0 * d + e)), d / (q.x + e), q.x, c.a); } half4 hsv2rgb(half4 c) { half4 K = half4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0); half3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www); return half4(c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y), c.a); } fragment half4 mainVideoFragment( QuadVertexOut in [[stage_in]], texture2d texture [[ texture(0) ]], const device float &brightness [[ buffer(0) ]], const device float &saturation [[ buffer(1) ]], const device float4 &overlay [[ buffer(2) ]] ) { constexpr sampler sampler(coord::normalized, address::repeat, filter::linear); half4 color = texture.sample(sampler, in.uv); color = rgb2hsv(color); color.b = clamp(color.b * brightness, 0.0, 1.0); color.g = clamp(color.g * saturation, 0.0, 1.0); color = hsv2rgb(color); color.rgb += half3(overlay.rgb * overlay.a); color.rgb = min(color.rgb, half3(1.0, 1.0, 1.0)); return half4(color.r, color.g, color.b, color.a); } constant int BLUR_SAMPLE_COUNT = 7; constant float BLUR_OFFSETS[BLUR_SAMPLE_COUNT] = { 1.489585, 3.475713, 5.461880, 7.448104, 9.434408, 11.420812, 13.407332 }; constant float BLUR_WEIGHTS[BLUR_SAMPLE_COUNT] = { 0.130498886, 0.113685958, 0.0886923522, 0.0619646012, 0.0387683809, 0.0217213109, 0.0108984858 }; static void gaussianBlur( texture2d inTexture, texture2d outTexture, float2 offset, uint2 gid ) { constexpr sampler sampler(coord::normalized, address::clamp_to_edge, filter::linear); uint2 textureDim(outTexture.get_width(), outTexture.get_height()); if(all(gid < textureDim)) { float3 outColor(0.0); float2 size(inTexture.get_width(), inTexture.get_height()); float2 baseTexCoord = float2(gid); for (int i = 0; i < BLUR_SAMPLE_COUNT; i++) { outColor += float3(inTexture.sample(sampler, (baseTexCoord + offset * BLUR_OFFSETS[i]) / size).rgb) * BLUR_WEIGHTS[i]; } outTexture.write(half4(half3(outColor), 1.0), gid); } } kernel void gaussianBlurHorizontal( texture2d inTexture [[ texture(0) ]], texture2d outTexture [[ texture(1) ]], uint2 gid [[ thread_position_in_grid ]] ) { gaussianBlur(inTexture, outTexture, float2(1, 0), gid); } kernel void gaussianBlurVertical( texture2d inTexture [[ texture(0) ]], texture2d outTexture [[ texture(1) ]], uint2 gid [[ thread_position_in_grid ]] ) { gaussianBlur(inTexture, outTexture, float2(0, 1), gid); }