mirror of
https://github.com/Swiftgram/Telegram-iOS.git
synced 2025-06-16 05:55:20 +00:00
307 lines
7.9 KiB
Mathematica
307 lines
7.9 KiB
Mathematica
/*
|
|
|
|
File: matrix.c
|
|
|
|
Abstract: simple 4x4 matrix computations
|
|
|
|
Version: 1.0
|
|
|
|
Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc.
|
|
("Apple") in consideration of your agreement to the following terms, and your
|
|
use, installation, modification or redistribution of this Apple software
|
|
constitutes acceptance of these terms. If you do not agree with these terms,
|
|
please do not use, install, modify or redistribute this Apple software.
|
|
|
|
In consideration of your agreement to abide by the following terms, and subject
|
|
to these terms, Apple grants you a personal, non-exclusive license, under
|
|
Apple's copyrights in this original Apple software (the "Apple Software"), to
|
|
use, reproduce, modify and redistribute the Apple Software, with or without
|
|
modifications, in source and/or binary forms; provided that if you redistribute
|
|
the Apple Software in its entirety and without modifications, you must retain
|
|
this notice and the following text and disclaimers in all such redistributions
|
|
of the Apple Software.
|
|
Neither the name, trademarks, service marks or logos of Apple Inc. may be used
|
|
to endorse or promote products derived from the Apple Software without specific
|
|
prior written permission from Apple. Except as expressly stated in this notice,
|
|
no other rights or licenses, express or implied, are granted by Apple herein,
|
|
including but not limited to any patent rights that may be infringed by your
|
|
derivative works or by other works in which the Apple Software may be
|
|
incorporated.
|
|
|
|
The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO
|
|
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
|
|
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE OR IN
|
|
COMBINATION WITH YOUR PRODUCTS.
|
|
|
|
IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
|
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR
|
|
DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER UNDER THEORY OF
|
|
CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN IF
|
|
APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
Copyright (C) 2009 Apple Inc. All Rights Reserved.
|
|
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include "matrix.h"
|
|
|
|
/*
|
|
NOTE: These functions are created for your convenience but the matrix algorithms
|
|
are not optimized. You are encouraged to do additional research on your own to
|
|
implement a more robust numerical algorithm.
|
|
*/
|
|
|
|
void mat4f_LoadIdentity(float* m)
|
|
{
|
|
m[0] = 1.0f;
|
|
m[1] = 0.0f;
|
|
m[2] = 0.0f;
|
|
m[3] = 0.0f;
|
|
|
|
m[4] = 0.0f;
|
|
m[5] = 1.0f;
|
|
m[6] = 0.0f;
|
|
m[7] = 0.0f;
|
|
|
|
m[8] = 0.0f;
|
|
m[9] = 0.0f;
|
|
m[10] = 1.0f;
|
|
m[11] = 0.0f;
|
|
|
|
m[12] = 0.0f;
|
|
m[13] = 0.0f;
|
|
m[14] = 0.0f;
|
|
m[15] = 1.0f;
|
|
}
|
|
|
|
// s is a 3D vector
|
|
void mat4f_LoadScale(float* s, float* m)
|
|
{
|
|
m[0] = s[0];
|
|
m[1] = 0.0f;
|
|
m[2] = 0.0f;
|
|
m[3] = 0.0f;
|
|
|
|
m[4] = 0.0f;
|
|
m[5] = s[1];
|
|
m[6] = 0.0f;
|
|
m[7] = 0.0f;
|
|
|
|
m[8] = 0.0f;
|
|
m[9] = 0.0f;
|
|
m[10] = s[2];
|
|
m[11] = 0.0f;
|
|
|
|
m[12] = 0.0f;
|
|
m[13] = 0.0f;
|
|
m[14] = 0.0f;
|
|
m[15] = 1.0f;
|
|
}
|
|
|
|
void mat4f_LoadXRotation(float radians, float* m)
|
|
{
|
|
float cosrad = cosf(radians);
|
|
float sinrad = sinf(radians);
|
|
|
|
m[0] = 1.0f;
|
|
m[1] = 0.0f;
|
|
m[2] = 0.0f;
|
|
m[3] = 0.0f;
|
|
|
|
m[4] = 0.0f;
|
|
m[5] = cosrad;
|
|
m[6] = sinrad;
|
|
m[7] = 0.0f;
|
|
|
|
m[8] = 0.0f;
|
|
m[9] = -sinrad;
|
|
m[10] = cosrad;
|
|
m[11] = 0.0f;
|
|
|
|
m[12] = 0.0f;
|
|
m[13] = 0.0f;
|
|
m[14] = 0.0f;
|
|
m[15] = 1.0f;
|
|
}
|
|
|
|
void mat4f_LoadYRotation(float radians, float* mout)
|
|
{
|
|
float cosrad = cosf(radians);
|
|
float sinrad = sinf(radians);
|
|
|
|
mout[0] = cosrad;
|
|
mout[1] = 0.0f;
|
|
mout[2] = -sinrad;
|
|
mout[3] = 0.0f;
|
|
|
|
mout[4] = 0.0f;
|
|
mout[5] = 1.0f;
|
|
mout[6] = 0.0f;
|
|
mout[7] = 0.0f;
|
|
|
|
mout[8] = sinrad;
|
|
mout[9] = 0.0f;
|
|
mout[10] = cosrad;
|
|
mout[11] = 0.0f;
|
|
|
|
mout[12] = 0.0f;
|
|
mout[13] = 0.0f;
|
|
mout[14] = 0.0f;
|
|
mout[15] = 1.0f;
|
|
}
|
|
|
|
void mat4f_LoadZRotation(float radians, float* mout)
|
|
{
|
|
float cosrad = cosf(radians);
|
|
float sinrad = sinf(radians);
|
|
|
|
mout[0] = cosrad;
|
|
mout[1] = sinrad;
|
|
mout[2] = 0.0f;
|
|
mout[3] = 0.0f;
|
|
|
|
mout[4] = -sinrad;
|
|
mout[5] = cosrad;
|
|
mout[6] = 0.0f;
|
|
mout[7] = 0.0f;
|
|
|
|
mout[8] = 0.0f;
|
|
mout[9] = 0.0f;
|
|
mout[10] = 1.0f;
|
|
mout[11] = 0.0f;
|
|
|
|
mout[12] = 0.0f;
|
|
mout[13] = 0.0f;
|
|
mout[14] = 0.0f;
|
|
mout[15] = 1.0f;
|
|
}
|
|
|
|
// v is a 3D vector
|
|
void mat4f_LoadTranslation(float* v, float* mout)
|
|
{
|
|
mout[0] = 1.0f;
|
|
mout[1] = 0.0f;
|
|
mout[2] = 0.0f;
|
|
mout[3] = 0.0f;
|
|
|
|
mout[4] = 0.0f;
|
|
mout[5] = 1.0f;
|
|
mout[6] = 0.0f;
|
|
mout[7] = 0.0f;
|
|
|
|
mout[8] = 0.0f;
|
|
mout[9] = 0.0f;
|
|
mout[10] = 1.0f;
|
|
mout[11] = 0.0f;
|
|
|
|
mout[12] = v[0];
|
|
mout[13] = v[1];
|
|
mout[14] = v[2];
|
|
mout[15] = 1.0f;
|
|
}
|
|
|
|
void mat4f_LoadPerspective(float fov_radians, float aspect, float zNear, float zFar, float* mout)
|
|
{
|
|
float f = 1.0f / tanf(fov_radians/2.0f);
|
|
|
|
mout[0] = f / aspect;
|
|
mout[1] = 0.0f;
|
|
mout[2] = 0.0f;
|
|
mout[3] = 0.0f;
|
|
|
|
mout[4] = 0.0f;
|
|
mout[5] = f;
|
|
mout[6] = 0.0f;
|
|
mout[7] = 0.0f;
|
|
|
|
mout[8] = 0.0f;
|
|
mout[9] = 0.0f;
|
|
mout[10] = (zFar+zNear) / (zNear-zFar);
|
|
mout[11] = -1.0f;
|
|
|
|
mout[12] = 0.0f;
|
|
mout[13] = 0.0f;
|
|
mout[14] = 2 * zFar * zNear / (zNear-zFar);
|
|
mout[15] = 0.0f;
|
|
}
|
|
|
|
void mat4f_LoadOrtho(float left, float right, float bottom, float top, float near, float far, float* mout)
|
|
{
|
|
float r_l = right - left;
|
|
float t_b = top - bottom;
|
|
float f_n = far - near;
|
|
float tx = - (right + left) / (right - left);
|
|
float ty = - (top + bottom) / (top - bottom);
|
|
float tz = - (far + near) / (far - near);
|
|
|
|
mout[0] = 2.0f / r_l;
|
|
mout[1] = 0.0f;
|
|
mout[2] = 0.0f;
|
|
mout[3] = 0.0f;
|
|
|
|
mout[4] = 0.0f;
|
|
mout[5] = 2.0f / t_b;
|
|
mout[6] = 0.0f;
|
|
mout[7] = 0.0f;
|
|
|
|
mout[8] = 0.0f;
|
|
mout[9] = 0.0f;
|
|
mout[10] = -2.0f / f_n;
|
|
mout[11] = 0.0f;
|
|
|
|
mout[12] = tx;
|
|
mout[13] = ty;
|
|
mout[14] = tz;
|
|
mout[15] = 1.0f;
|
|
}
|
|
|
|
void mat4f_MultiplyMat4f(const float* a, const float* b, float* mout)
|
|
{
|
|
mout[0] = a[0] * b[0] + a[4] * b[1] + a[8] * b[2] + a[12] * b[3];
|
|
mout[1] = a[1] * b[0] + a[5] * b[1] + a[9] * b[2] + a[13] * b[3];
|
|
mout[2] = a[2] * b[0] + a[6] * b[1] + a[10] * b[2] + a[14] * b[3];
|
|
mout[3] = a[3] * b[0] + a[7] * b[1] + a[11] * b[2] + a[15] * b[3];
|
|
|
|
mout[4] = a[0] * b[4] + a[4] * b[5] + a[8] * b[6] + a[12] * b[7];
|
|
mout[5] = a[1] * b[4] + a[5] * b[5] + a[9] * b[6] + a[13] * b[7];
|
|
mout[6] = a[2] * b[4] + a[6] * b[5] + a[10] * b[6] + a[14] * b[7];
|
|
mout[7] = a[3] * b[4] + a[7] * b[5] + a[11] * b[6] + a[15] * b[7];
|
|
|
|
mout[8] = a[0] * b[8] + a[4] * b[9] + a[8] * b[10] + a[12] * b[11];
|
|
mout[9] = a[1] * b[8] + a[5] * b[9] + a[9] * b[10] + a[13] * b[11];
|
|
mout[10] = a[2] * b[8] + a[6] * b[9] + a[10] * b[10] + a[14] * b[11];
|
|
mout[11] = a[3] * b[8] + a[7] * b[9] + a[11] * b[10] + a[15] * b[11];
|
|
|
|
mout[12] = a[0] * b[12] + a[4] * b[13] + a[8] * b[14] + a[12] * b[15];
|
|
mout[13] = a[1] * b[12] + a[5] * b[13] + a[9] * b[14] + a[13] * b[15];
|
|
mout[14] = a[2] * b[12] + a[6] * b[13] + a[10] * b[14] + a[14] * b[15];
|
|
mout[15] = a[3] * b[12] + a[7] * b[13] + a[11] * b[14] + a[15] * b[15];
|
|
}
|
|
|
|
void mat4f_LoadCGAffineTransform(float* m, CGAffineTransform t)
|
|
{
|
|
m[0] = t.a;
|
|
m[1] = t.b;
|
|
m[2] = 0.0f;
|
|
m[3] = 0.0f;
|
|
|
|
m[4] = t.c;
|
|
m[5] = t.d;
|
|
m[6] = 0.0f;
|
|
m[7] = 0.0f;
|
|
|
|
m[8] = 0.0f;
|
|
m[9] = 0.0f;
|
|
m[10] = 1.0f;
|
|
m[11] = 0.0f;
|
|
|
|
m[12] = t.tx;
|
|
m[13] = t.ty;
|
|
m[14] = 0.0f;
|
|
m[15] = 1.0f;
|
|
}
|