2025-07-20 02:49:04 +01:00

300 lines
11 KiB
Swift

//
// AgeNet.swift
//
// This file was automatically generated and should not be edited.
//
import CoreML
/// Model Prediction Input Type
@available(macOS 12.0, iOS 15.0, tvOS 15.0, watchOS 8.0, visionOS 1.0, *)
class AgeNetInput : MLFeatureProvider {
/// input as color (kCVPixelFormatType_32BGRA) image buffer, 112 pixels wide by 112 pixels high
var input: CVPixelBuffer
var featureNames: Set<String> { ["input"] }
func featureValue(for featureName: String) -> MLFeatureValue? {
if featureName == "input" {
return MLFeatureValue(pixelBuffer: input)
}
return nil
}
init(input: CVPixelBuffer) {
self.input = input
}
convenience init(inputWith input: CGImage) throws {
self.init(input: try MLFeatureValue(cgImage: input, pixelsWide: 112, pixelsHigh: 112, pixelFormatType: kCVPixelFormatType_32ARGB, options: nil).imageBufferValue!)
}
convenience init(inputAt input: URL) throws {
self.init(input: try MLFeatureValue(imageAt: input, pixelsWide: 112, pixelsHigh: 112, pixelFormatType: kCVPixelFormatType_32ARGB, options: nil).imageBufferValue!)
}
func setInput(with input: CGImage) throws {
self.input = try MLFeatureValue(cgImage: input, pixelsWide: 112, pixelsHigh: 112, pixelFormatType: kCVPixelFormatType_32ARGB, options: nil).imageBufferValue!
}
func setInput(with input: URL) throws {
self.input = try MLFeatureValue(imageAt: input, pixelsWide: 112, pixelsHigh: 112, pixelFormatType: kCVPixelFormatType_32ARGB, options: nil).imageBufferValue!
}
}
/// Model Prediction Output Type
@available(macOS 12.0, iOS 15.0, tvOS 15.0, watchOS 8.0, visionOS 1.0, *)
class AgeNetOutput : MLFeatureProvider {
/// Source provided by CoreML
private let provider : MLFeatureProvider
/// Identity as 1 by 1 matrix of floats
var Identity: MLMultiArray {
provider.featureValue(for: "Identity")!.multiArrayValue!
}
/// Identity as 1 by 1 matrix of floats
var IdentityShapedArray: MLShapedArray<Float> {
MLShapedArray<Float>(Identity)
}
var featureNames: Set<String> {
provider.featureNames
}
func featureValue(for featureName: String) -> MLFeatureValue? {
provider.featureValue(for: featureName)
}
init(Identity: MLMultiArray) {
self.provider = try! MLDictionaryFeatureProvider(dictionary: ["Identity" : MLFeatureValue(multiArray: Identity)])
}
init(features: MLFeatureProvider) {
self.provider = features
}
}
/// Class for model loading and prediction
@available(macOS 12.0, iOS 15.0, tvOS 15.0, watchOS 8.0, visionOS 1.0, *)
class AgeNet {
let model: MLModel
/// URL of model assuming it was installed in the same bundle as this class
class var urlOfModelInThisBundle : URL {
let bundle = Bundle(for: self)
return bundle.url(forResource: "AgeNet", withExtension:"mlmodelc")!
}
/**
Construct AgeNet instance with an existing MLModel object.
Usually the application does not use this initializer unless it makes a subclass of AgeNet.
Such application may want to use `MLModel(contentsOfURL:configuration:)` and `AgeNet.urlOfModelInThisBundle` to create a MLModel object to pass-in.
- parameters:
- model: MLModel object
*/
init(model: MLModel) {
self.model = model
}
/**
Construct a model with configuration
- parameters:
- configuration: the desired model configuration
- throws: an NSError object that describes the problem
*/
convenience init(configuration: MLModelConfiguration = MLModelConfiguration()) throws {
try self.init(contentsOf: type(of:self).urlOfModelInThisBundle, configuration: configuration)
}
/**
Construct AgeNet instance with explicit path to mlmodelc file
- parameters:
- modelURL: the file url of the model
- throws: an NSError object that describes the problem
*/
convenience init(contentsOf modelURL: URL) throws {
try self.init(model: MLModel(contentsOf: modelURL))
}
/**
Construct a model with URL of the .mlmodelc directory and configuration
- parameters:
- modelURL: the file url of the model
- configuration: the desired model configuration
- throws: an NSError object that describes the problem
*/
convenience init(contentsOf modelURL: URL, configuration: MLModelConfiguration) throws {
try self.init(model: MLModel(contentsOf: modelURL, configuration: configuration))
}
/**
Construct AgeNet instance asynchronously with optional configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
- parameters:
- configuration: the desired model configuration
- handler: the completion handler to be called when the model loading completes successfully or unsuccessfully
*/
class func load(configuration: MLModelConfiguration = MLModelConfiguration(), completionHandler handler: @escaping (Swift.Result<AgeNet, Error>) -> Void) {
load(contentsOf: self.urlOfModelInThisBundle, configuration: configuration, completionHandler: handler)
}
/**
Construct AgeNet instance asynchronously with optional configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
- parameters:
- configuration: the desired model configuration
*/
class func load(configuration: MLModelConfiguration = MLModelConfiguration()) async throws -> AgeNet {
try await load(contentsOf: self.urlOfModelInThisBundle, configuration: configuration)
}
/**
Construct AgeNet instance asynchronously with URL of the .mlmodelc directory with optional configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
- parameters:
- modelURL: the URL to the model
- configuration: the desired model configuration
- handler: the completion handler to be called when the model loading completes successfully or unsuccessfully
*/
class func load(contentsOf modelURL: URL, configuration: MLModelConfiguration = MLModelConfiguration(), completionHandler handler: @escaping (Swift.Result<AgeNet, Error>) -> Void) {
MLModel.load(contentsOf: modelURL, configuration: configuration) { result in
switch result {
case .failure(let error):
handler(.failure(error))
case .success(let model):
handler(.success(AgeNet(model: model)))
}
}
}
/**
Construct AgeNet instance asynchronously with URL of the .mlmodelc directory with optional configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
- parameters:
- modelURL: the URL to the model
- configuration: the desired model configuration
*/
class func load(contentsOf modelURL: URL, configuration: MLModelConfiguration = MLModelConfiguration()) async throws -> AgeNet {
let model = try await MLModel.load(contentsOf: modelURL, configuration: configuration)
return AgeNet(model: model)
}
/**
Make a prediction using the structured interface
It uses the default function if the model has multiple functions.
- parameters:
- input: the input to the prediction as AgeNetInput
- throws: an NSError object that describes the problem
- returns: the result of the prediction as AgeNetOutput
*/
func prediction(input: AgeNetInput) throws -> AgeNetOutput {
try prediction(input: input, options: MLPredictionOptions())
}
/**
Make a prediction using the structured interface
It uses the default function if the model has multiple functions.
- parameters:
- input: the input to the prediction as AgeNetInput
- options: prediction options
- throws: an NSError object that describes the problem
- returns: the result of the prediction as AgeNetOutput
*/
func prediction(input: AgeNetInput, options: MLPredictionOptions) throws -> AgeNetOutput {
let outFeatures = try model.prediction(from: input, options: options)
return AgeNetOutput(features: outFeatures)
}
/**
Make an asynchronous prediction using the structured interface
It uses the default function if the model has multiple functions.
- parameters:
- input: the input to the prediction as AgeNetInput
- options: prediction options
- throws: an NSError object that describes the problem
- returns: the result of the prediction as AgeNetOutput
*/
@available(macOS 14.0, iOS 17.0, tvOS 17.0, watchOS 10.0, visionOS 1.0, *)
func prediction(input: AgeNetInput, options: MLPredictionOptions = MLPredictionOptions()) async throws -> AgeNetOutput {
let outFeatures = try await model.prediction(from: input, options: options)
return AgeNetOutput(features: outFeatures)
}
/**
Make a prediction using the convenience interface
It uses the default function if the model has multiple functions.
- parameters:
- input: color (kCVPixelFormatType_32BGRA) image buffer, 112 pixels wide by 112 pixels high
- throws: an NSError object that describes the problem
- returns: the result of the prediction as AgeNetOutput
*/
func prediction(input: CVPixelBuffer) throws -> AgeNetOutput {
let input_ = AgeNetInput(input: input)
return try prediction(input: input_)
}
/**
Make a batch prediction using the structured interface
It uses the default function if the model has multiple functions.
- parameters:
- inputs: the inputs to the prediction as [AgeNetInput]
- options: prediction options
- throws: an NSError object that describes the problem
- returns: the result of the prediction as [AgeNetOutput]
*/
func predictions(inputs: [AgeNetInput], options: MLPredictionOptions = MLPredictionOptions()) throws -> [AgeNetOutput] {
let batchIn = MLArrayBatchProvider(array: inputs)
let batchOut = try model.predictions(from: batchIn, options: options)
var results : [AgeNetOutput] = []
results.reserveCapacity(inputs.count)
for i in 0..<batchOut.count {
let outProvider = batchOut.features(at: i)
let result = AgeNetOutput(features: outProvider)
results.append(result)
}
return results
}
}