mirror of
https://github.com/Swiftgram/Telegram-iOS.git
synced 2025-06-16 05:55:20 +00:00
678 lines
29 KiB
C
678 lines
29 KiB
C
#import "DCTCommon.h"
|
|
|
|
#include <stdlib.h>
|
|
|
|
#if defined(__aarch64__)
|
|
|
|
typedef long JLONG;
|
|
|
|
#define GETJSAMPLE(value) ((int)(value))
|
|
|
|
#define MAXJSAMPLE 255
|
|
#define CENTERJSAMPLE 128
|
|
|
|
typedef unsigned int JDIMENSION;
|
|
|
|
#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */
|
|
|
|
#define MULTIPLIER short /* prefer 16-bit with SIMD for parellelism */
|
|
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
|
|
|
|
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
|
|
|
|
/* Various constants determining the sizes of things.
|
|
* All of these are specified by the JPEG standard, so don't change them
|
|
* if you want to be compatible.
|
|
*/
|
|
|
|
#define DCTSIZE 8 /* The basic DCT block is 8x8 samples */
|
|
#define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */
|
|
#define NUM_QUANT_TBLS 4 /* Quantization tables are numbered 0..3 */
|
|
#define NUM_HUFF_TBLS 4 /* Huffman tables are numbered 0..3 */
|
|
#define NUM_ARITH_TBLS 16 /* Arith-coding tables are numbered 0..15 */
|
|
#define MAX_COMPS_IN_SCAN 4 /* JPEG limit on # of components in one scan */
|
|
#define MAX_SAMP_FACTOR 4 /* JPEG limit on sampling factors */
|
|
/* Unfortunately, some bozo at Adobe saw no reason to be bound by the standard;
|
|
* the PostScript DCT filter can emit files with many more than 10 blocks/MCU.
|
|
* If you happen to run across such a file, you can up D_MAX_BLOCKS_IN_MCU
|
|
* to handle it. We even let you do this from the jconfig.h file. However,
|
|
* we strongly discourage changing C_MAX_BLOCKS_IN_MCU; just because Adobe
|
|
* sometimes emits noncompliant files doesn't mean you should too.
|
|
*/
|
|
#define C_MAX_BLOCKS_IN_MCU 10 /* compressor's limit on blocks per MCU */
|
|
#ifndef D_MAX_BLOCKS_IN_MCU
|
|
#define D_MAX_BLOCKS_IN_MCU 10 /* decompressor's limit on blocks per MCU */
|
|
#endif
|
|
|
|
|
|
/* Data structures for images (arrays of samples and of DCT coefficients).
|
|
*/
|
|
|
|
typedef JSAMPROW *JSAMPARRAY; /* ptr to some rows (a 2-D sample array) */
|
|
typedef JSAMPARRAY *JSAMPIMAGE; /* a 3-D sample array: top index is color */
|
|
|
|
typedef JCOEF JBLOCK[DCTSIZE2]; /* one block of coefficients */
|
|
typedef JBLOCK *JBLOCKROW; /* pointer to one row of coefficient blocks */
|
|
typedef JBLOCKROW *JBLOCKARRAY; /* a 2-D array of coefficient blocks */
|
|
typedef JBLOCKARRAY *JBLOCKIMAGE; /* a 3-D array of coefficient blocks */
|
|
|
|
#include <arm_neon.h>
|
|
|
|
/* jsimd_idct_ifast_neon() performs dequantization and a fast, not so accurate
|
|
* inverse DCT (Discrete Cosine Transform) on one block of coefficients. It
|
|
* uses the same calculations and produces exactly the same output as IJG's
|
|
* original jpeg_idct_ifast() function, which can be found in jidctfst.c.
|
|
*
|
|
* Scaled integer constants are used to avoid floating-point arithmetic:
|
|
* 0.082392200 = 2688 * 2^-15
|
|
* 0.414213562 = 13568 * 2^-15
|
|
* 0.847759065 = 27776 * 2^-15
|
|
* 0.613125930 = 20096 * 2^-15
|
|
*
|
|
* See jidctfst.c for further details of the IDCT algorithm. Where possible,
|
|
* the variable names and comments here in jsimd_idct_ifast_neon() match up
|
|
* with those in jpeg_idct_ifast().
|
|
*/
|
|
|
|
#define PASS1_BITS 2
|
|
|
|
#define F_0_082 2688
|
|
#define F_0_414 13568
|
|
#define F_0_847 27776
|
|
#define F_0_613 20096
|
|
|
|
|
|
__attribute__((aligned(16))) static const int16_t jsimd_idct_ifast_neon_consts[] = {
|
|
F_0_082, F_0_414, F_0_847, F_0_613
|
|
};
|
|
|
|
#define F_0_382 12544
|
|
#define F_0_541 17792
|
|
#define F_0_707 23168
|
|
#define F_0_306 9984
|
|
|
|
|
|
__attribute__((aligned(16))) static const int16_t jsimd_fdct_ifast_neon_consts[] = {
|
|
F_0_382, F_0_541, F_0_707, F_0_306
|
|
};
|
|
|
|
void dct_jpeg_fdct_ifast(DCTELEM *data) {
|
|
/* Load an 8x8 block of samples into Neon registers. De-interleaving loads
|
|
* are used, followed by vuzp to transpose the block such that we have a
|
|
* column of samples per vector - allowing all rows to be processed at once.
|
|
*/
|
|
int16x8x4_t data1 = vld4q_s16(data);
|
|
int16x8x4_t data2 = vld4q_s16(data + 4 * DCTSIZE);
|
|
|
|
int16x8x2_t cols_04 = vuzpq_s16(data1.val[0], data2.val[0]);
|
|
int16x8x2_t cols_15 = vuzpq_s16(data1.val[1], data2.val[1]);
|
|
int16x8x2_t cols_26 = vuzpq_s16(data1.val[2], data2.val[2]);
|
|
int16x8x2_t cols_37 = vuzpq_s16(data1.val[3], data2.val[3]);
|
|
|
|
int16x8_t col0 = cols_04.val[0];
|
|
int16x8_t col1 = cols_15.val[0];
|
|
int16x8_t col2 = cols_26.val[0];
|
|
int16x8_t col3 = cols_37.val[0];
|
|
int16x8_t col4 = cols_04.val[1];
|
|
int16x8_t col5 = cols_15.val[1];
|
|
int16x8_t col6 = cols_26.val[1];
|
|
int16x8_t col7 = cols_37.val[1];
|
|
|
|
/* Pass 1: process rows. */
|
|
|
|
/* Load DCT conversion constants. */
|
|
const int16x4_t consts = vld1_s16(jsimd_fdct_ifast_neon_consts);
|
|
|
|
int16x8_t tmp0 = vaddq_s16(col0, col7);
|
|
int16x8_t tmp7 = vsubq_s16(col0, col7);
|
|
int16x8_t tmp1 = vaddq_s16(col1, col6);
|
|
int16x8_t tmp6 = vsubq_s16(col1, col6);
|
|
int16x8_t tmp2 = vaddq_s16(col2, col5);
|
|
int16x8_t tmp5 = vsubq_s16(col2, col5);
|
|
int16x8_t tmp3 = vaddq_s16(col3, col4);
|
|
int16x8_t tmp4 = vsubq_s16(col3, col4);
|
|
|
|
/* Even part */
|
|
int16x8_t tmp10 = vaddq_s16(tmp0, tmp3); /* phase 2 */
|
|
int16x8_t tmp13 = vsubq_s16(tmp0, tmp3);
|
|
int16x8_t tmp11 = vaddq_s16(tmp1, tmp2);
|
|
int16x8_t tmp12 = vsubq_s16(tmp1, tmp2);
|
|
|
|
col0 = vaddq_s16(tmp10, tmp11); /* phase 3 */
|
|
col4 = vsubq_s16(tmp10, tmp11);
|
|
|
|
int16x8_t z1 = vqdmulhq_lane_s16(vaddq_s16(tmp12, tmp13), consts, 2);
|
|
col2 = vaddq_s16(tmp13, z1); /* phase 5 */
|
|
col6 = vsubq_s16(tmp13, z1);
|
|
|
|
/* Odd part */
|
|
tmp10 = vaddq_s16(tmp4, tmp5); /* phase 2 */
|
|
tmp11 = vaddq_s16(tmp5, tmp6);
|
|
tmp12 = vaddq_s16(tmp6, tmp7);
|
|
|
|
int16x8_t z5 = vqdmulhq_lane_s16(vsubq_s16(tmp10, tmp12), consts, 0);
|
|
int16x8_t z2 = vqdmulhq_lane_s16(tmp10, consts, 1);
|
|
z2 = vaddq_s16(z2, z5);
|
|
int16x8_t z4 = vqdmulhq_lane_s16(tmp12, consts, 3);
|
|
z5 = vaddq_s16(tmp12, z5);
|
|
z4 = vaddq_s16(z4, z5);
|
|
int16x8_t z3 = vqdmulhq_lane_s16(tmp11, consts, 2);
|
|
|
|
int16x8_t z11 = vaddq_s16(tmp7, z3); /* phase 5 */
|
|
int16x8_t z13 = vsubq_s16(tmp7, z3);
|
|
|
|
col5 = vaddq_s16(z13, z2); /* phase 6 */
|
|
col3 = vsubq_s16(z13, z2);
|
|
col1 = vaddq_s16(z11, z4);
|
|
col7 = vsubq_s16(z11, z4);
|
|
|
|
/* Transpose to work on columns in pass 2. */
|
|
int16x8x2_t cols_01 = vtrnq_s16(col0, col1);
|
|
int16x8x2_t cols_23 = vtrnq_s16(col2, col3);
|
|
int16x8x2_t cols_45 = vtrnq_s16(col4, col5);
|
|
int16x8x2_t cols_67 = vtrnq_s16(col6, col7);
|
|
|
|
int32x4x2_t cols_0145_l = vtrnq_s32(vreinterpretq_s32_s16(cols_01.val[0]),
|
|
vreinterpretq_s32_s16(cols_45.val[0]));
|
|
int32x4x2_t cols_0145_h = vtrnq_s32(vreinterpretq_s32_s16(cols_01.val[1]),
|
|
vreinterpretq_s32_s16(cols_45.val[1]));
|
|
int32x4x2_t cols_2367_l = vtrnq_s32(vreinterpretq_s32_s16(cols_23.val[0]),
|
|
vreinterpretq_s32_s16(cols_67.val[0]));
|
|
int32x4x2_t cols_2367_h = vtrnq_s32(vreinterpretq_s32_s16(cols_23.val[1]),
|
|
vreinterpretq_s32_s16(cols_67.val[1]));
|
|
|
|
int32x4x2_t rows_04 = vzipq_s32(cols_0145_l.val[0], cols_2367_l.val[0]);
|
|
int32x4x2_t rows_15 = vzipq_s32(cols_0145_h.val[0], cols_2367_h.val[0]);
|
|
int32x4x2_t rows_26 = vzipq_s32(cols_0145_l.val[1], cols_2367_l.val[1]);
|
|
int32x4x2_t rows_37 = vzipq_s32(cols_0145_h.val[1], cols_2367_h.val[1]);
|
|
|
|
int16x8_t row0 = vreinterpretq_s16_s32(rows_04.val[0]);
|
|
int16x8_t row1 = vreinterpretq_s16_s32(rows_15.val[0]);
|
|
int16x8_t row2 = vreinterpretq_s16_s32(rows_26.val[0]);
|
|
int16x8_t row3 = vreinterpretq_s16_s32(rows_37.val[0]);
|
|
int16x8_t row4 = vreinterpretq_s16_s32(rows_04.val[1]);
|
|
int16x8_t row5 = vreinterpretq_s16_s32(rows_15.val[1]);
|
|
int16x8_t row6 = vreinterpretq_s16_s32(rows_26.val[1]);
|
|
int16x8_t row7 = vreinterpretq_s16_s32(rows_37.val[1]);
|
|
|
|
/* Pass 2: process columns. */
|
|
|
|
tmp0 = vaddq_s16(row0, row7);
|
|
tmp7 = vsubq_s16(row0, row7);
|
|
tmp1 = vaddq_s16(row1, row6);
|
|
tmp6 = vsubq_s16(row1, row6);
|
|
tmp2 = vaddq_s16(row2, row5);
|
|
tmp5 = vsubq_s16(row2, row5);
|
|
tmp3 = vaddq_s16(row3, row4);
|
|
tmp4 = vsubq_s16(row3, row4);
|
|
|
|
/* Even part */
|
|
tmp10 = vaddq_s16(tmp0, tmp3); /* phase 2 */
|
|
tmp13 = vsubq_s16(tmp0, tmp3);
|
|
tmp11 = vaddq_s16(tmp1, tmp2);
|
|
tmp12 = vsubq_s16(tmp1, tmp2);
|
|
|
|
row0 = vaddq_s16(tmp10, tmp11); /* phase 3 */
|
|
row4 = vsubq_s16(tmp10, tmp11);
|
|
|
|
z1 = vqdmulhq_lane_s16(vaddq_s16(tmp12, tmp13), consts, 2);
|
|
row2 = vaddq_s16(tmp13, z1); /* phase 5 */
|
|
row6 = vsubq_s16(tmp13, z1);
|
|
|
|
/* Odd part */
|
|
tmp10 = vaddq_s16(tmp4, tmp5); /* phase 2 */
|
|
tmp11 = vaddq_s16(tmp5, tmp6);
|
|
tmp12 = vaddq_s16(tmp6, tmp7);
|
|
|
|
z5 = vqdmulhq_lane_s16(vsubq_s16(tmp10, tmp12), consts, 0);
|
|
z2 = vqdmulhq_lane_s16(tmp10, consts, 1);
|
|
z2 = vaddq_s16(z2, z5);
|
|
z4 = vqdmulhq_lane_s16(tmp12, consts, 3);
|
|
z5 = vaddq_s16(tmp12, z5);
|
|
z4 = vaddq_s16(z4, z5);
|
|
z3 = vqdmulhq_lane_s16(tmp11, consts, 2);
|
|
|
|
z11 = vaddq_s16(tmp7, z3); /* phase 5 */
|
|
z13 = vsubq_s16(tmp7, z3);
|
|
|
|
row5 = vaddq_s16(z13, z2); /* phase 6 */
|
|
row3 = vsubq_s16(z13, z2);
|
|
row1 = vaddq_s16(z11, z4);
|
|
row7 = vsubq_s16(z11, z4);
|
|
|
|
vst1q_s16(data + 0 * DCTSIZE, row0);
|
|
vst1q_s16(data + 1 * DCTSIZE, row1);
|
|
vst1q_s16(data + 2 * DCTSIZE, row2);
|
|
vst1q_s16(data + 3 * DCTSIZE, row3);
|
|
vst1q_s16(data + 4 * DCTSIZE, row4);
|
|
vst1q_s16(data + 5 * DCTSIZE, row5);
|
|
vst1q_s16(data + 6 * DCTSIZE, row6);
|
|
vst1q_s16(data + 7 * DCTSIZE, row7);
|
|
}
|
|
|
|
struct DctAuxiliaryData {
|
|
};
|
|
|
|
struct DctAuxiliaryData *createDctAuxiliaryData() {
|
|
struct DctAuxiliaryData *result = malloc(sizeof(struct DctAuxiliaryData));
|
|
return result;
|
|
}
|
|
|
|
void freeDctAuxiliaryData(struct DctAuxiliaryData *data) {
|
|
if (data) {
|
|
free(data);
|
|
}
|
|
}
|
|
|
|
void dct_jpeg_idct_ifast(struct DctAuxiliaryData *auxiliaryData, void *dct_table, JCOEFPTR coef_block, JSAMPROW output_buf)
|
|
{
|
|
IFAST_MULT_TYPE *quantptr = dct_table;
|
|
|
|
/* Load DCT coefficients. */
|
|
int16x8_t row0 = vld1q_s16(coef_block + 0 * DCTSIZE);
|
|
int16x8_t row1 = vld1q_s16(coef_block + 1 * DCTSIZE);
|
|
int16x8_t row2 = vld1q_s16(coef_block + 2 * DCTSIZE);
|
|
int16x8_t row3 = vld1q_s16(coef_block + 3 * DCTSIZE);
|
|
int16x8_t row4 = vld1q_s16(coef_block + 4 * DCTSIZE);
|
|
int16x8_t row5 = vld1q_s16(coef_block + 5 * DCTSIZE);
|
|
int16x8_t row6 = vld1q_s16(coef_block + 6 * DCTSIZE);
|
|
int16x8_t row7 = vld1q_s16(coef_block + 7 * DCTSIZE);
|
|
|
|
/* Load quantization table values for DC coefficients. */
|
|
int16x8_t quant_row0 = vld1q_s16(quantptr + 0 * DCTSIZE);
|
|
/* Dequantize DC coefficients. */
|
|
row0 = vmulq_s16(row0, quant_row0);
|
|
|
|
/* Construct bitmap to test if all AC coefficients are 0. */
|
|
int16x8_t bitmap = vorrq_s16(row1, row2);
|
|
bitmap = vorrq_s16(bitmap, row3);
|
|
bitmap = vorrq_s16(bitmap, row4);
|
|
bitmap = vorrq_s16(bitmap, row5);
|
|
bitmap = vorrq_s16(bitmap, row6);
|
|
bitmap = vorrq_s16(bitmap, row7);
|
|
|
|
int64_t left_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 0);
|
|
int64_t right_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 1);
|
|
|
|
/* Load IDCT conversion constants. */
|
|
const int16x4_t consts = vld1_s16(jsimd_idct_ifast_neon_consts);
|
|
|
|
if (left_ac_bitmap == 0 && right_ac_bitmap == 0) {
|
|
/* All AC coefficients are zero.
|
|
* Compute DC values and duplicate into vectors.
|
|
*/
|
|
int16x8_t dcval = row0;
|
|
row1 = dcval;
|
|
row2 = dcval;
|
|
row3 = dcval;
|
|
row4 = dcval;
|
|
row5 = dcval;
|
|
row6 = dcval;
|
|
row7 = dcval;
|
|
} else if (left_ac_bitmap == 0) {
|
|
/* AC coefficients are zero for columns 0, 1, 2, and 3.
|
|
* Use DC values for these columns.
|
|
*/
|
|
int16x4_t dcval = vget_low_s16(row0);
|
|
|
|
/* Commence regular fast IDCT computation for columns 4, 5, 6, and 7. */
|
|
|
|
/* Load quantization table. */
|
|
int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE + 4);
|
|
int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE + 4);
|
|
int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE + 4);
|
|
int16x4_t quant_row4 = vld1_s16(quantptr + 4 * DCTSIZE + 4);
|
|
int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE + 4);
|
|
int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE + 4);
|
|
int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE + 4);
|
|
|
|
/* Even part: dequantize DCT coefficients. */
|
|
int16x4_t tmp0 = vget_high_s16(row0);
|
|
int16x4_t tmp1 = vmul_s16(vget_high_s16(row2), quant_row2);
|
|
int16x4_t tmp2 = vmul_s16(vget_high_s16(row4), quant_row4);
|
|
int16x4_t tmp3 = vmul_s16(vget_high_s16(row6), quant_row6);
|
|
|
|
int16x4_t tmp10 = vadd_s16(tmp0, tmp2); /* phase 3 */
|
|
int16x4_t tmp11 = vsub_s16(tmp0, tmp2);
|
|
|
|
int16x4_t tmp13 = vadd_s16(tmp1, tmp3); /* phases 5-3 */
|
|
int16x4_t tmp1_sub_tmp3 = vsub_s16(tmp1, tmp3);
|
|
int16x4_t tmp12 = vqdmulh_lane_s16(tmp1_sub_tmp3, consts, 1);
|
|
tmp12 = vadd_s16(tmp12, tmp1_sub_tmp3);
|
|
tmp12 = vsub_s16(tmp12, tmp13);
|
|
|
|
tmp0 = vadd_s16(tmp10, tmp13); /* phase 2 */
|
|
tmp3 = vsub_s16(tmp10, tmp13);
|
|
tmp1 = vadd_s16(tmp11, tmp12);
|
|
tmp2 = vsub_s16(tmp11, tmp12);
|
|
|
|
/* Odd part: dequantize DCT coefficients. */
|
|
int16x4_t tmp4 = vmul_s16(vget_high_s16(row1), quant_row1);
|
|
int16x4_t tmp5 = vmul_s16(vget_high_s16(row3), quant_row3);
|
|
int16x4_t tmp6 = vmul_s16(vget_high_s16(row5), quant_row5);
|
|
int16x4_t tmp7 = vmul_s16(vget_high_s16(row7), quant_row7);
|
|
|
|
int16x4_t z13 = vadd_s16(tmp6, tmp5); /* phase 6 */
|
|
int16x4_t neg_z10 = vsub_s16(tmp5, tmp6);
|
|
int16x4_t z11 = vadd_s16(tmp4, tmp7);
|
|
int16x4_t z12 = vsub_s16(tmp4, tmp7);
|
|
|
|
tmp7 = vadd_s16(z11, z13); /* phase 5 */
|
|
int16x4_t z11_sub_z13 = vsub_s16(z11, z13);
|
|
tmp11 = vqdmulh_lane_s16(z11_sub_z13, consts, 1);
|
|
tmp11 = vadd_s16(tmp11, z11_sub_z13);
|
|
|
|
int16x4_t z10_add_z12 = vsub_s16(z12, neg_z10);
|
|
int16x4_t z5 = vqdmulh_lane_s16(z10_add_z12, consts, 2);
|
|
z5 = vadd_s16(z5, z10_add_z12);
|
|
tmp10 = vqdmulh_lane_s16(z12, consts, 0);
|
|
tmp10 = vadd_s16(tmp10, z12);
|
|
tmp10 = vsub_s16(tmp10, z5);
|
|
tmp12 = vqdmulh_lane_s16(neg_z10, consts, 3);
|
|
tmp12 = vadd_s16(tmp12, vadd_s16(neg_z10, neg_z10));
|
|
tmp12 = vadd_s16(tmp12, z5);
|
|
|
|
tmp6 = vsub_s16(tmp12, tmp7); /* phase 2 */
|
|
tmp5 = vsub_s16(tmp11, tmp6);
|
|
tmp4 = vadd_s16(tmp10, tmp5);
|
|
|
|
row0 = vcombine_s16(dcval, vadd_s16(tmp0, tmp7));
|
|
row7 = vcombine_s16(dcval, vsub_s16(tmp0, tmp7));
|
|
row1 = vcombine_s16(dcval, vadd_s16(tmp1, tmp6));
|
|
row6 = vcombine_s16(dcval, vsub_s16(tmp1, tmp6));
|
|
row2 = vcombine_s16(dcval, vadd_s16(tmp2, tmp5));
|
|
row5 = vcombine_s16(dcval, vsub_s16(tmp2, tmp5));
|
|
row4 = vcombine_s16(dcval, vadd_s16(tmp3, tmp4));
|
|
row3 = vcombine_s16(dcval, vsub_s16(tmp3, tmp4));
|
|
} else if (right_ac_bitmap == 0) {
|
|
/* AC coefficients are zero for columns 4, 5, 6, and 7.
|
|
* Use DC values for these columns.
|
|
*/
|
|
int16x4_t dcval = vget_high_s16(row0);
|
|
|
|
/* Commence regular fast IDCT computation for columns 0, 1, 2, and 3. */
|
|
|
|
/* Load quantization table. */
|
|
int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE);
|
|
int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE);
|
|
int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE);
|
|
int16x4_t quant_row4 = vld1_s16(quantptr + 4 * DCTSIZE);
|
|
int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE);
|
|
int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE);
|
|
int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE);
|
|
|
|
/* Even part: dequantize DCT coefficients. */
|
|
int16x4_t tmp0 = vget_low_s16(row0);
|
|
int16x4_t tmp1 = vmul_s16(vget_low_s16(row2), quant_row2);
|
|
int16x4_t tmp2 = vmul_s16(vget_low_s16(row4), quant_row4);
|
|
int16x4_t tmp3 = vmul_s16(vget_low_s16(row6), quant_row6);
|
|
|
|
int16x4_t tmp10 = vadd_s16(tmp0, tmp2); /* phase 3 */
|
|
int16x4_t tmp11 = vsub_s16(tmp0, tmp2);
|
|
|
|
int16x4_t tmp13 = vadd_s16(tmp1, tmp3); /* phases 5-3 */
|
|
int16x4_t tmp1_sub_tmp3 = vsub_s16(tmp1, tmp3);
|
|
int16x4_t tmp12 = vqdmulh_lane_s16(tmp1_sub_tmp3, consts, 1);
|
|
tmp12 = vadd_s16(tmp12, tmp1_sub_tmp3);
|
|
tmp12 = vsub_s16(tmp12, tmp13);
|
|
|
|
tmp0 = vadd_s16(tmp10, tmp13); /* phase 2 */
|
|
tmp3 = vsub_s16(tmp10, tmp13);
|
|
tmp1 = vadd_s16(tmp11, tmp12);
|
|
tmp2 = vsub_s16(tmp11, tmp12);
|
|
|
|
/* Odd part: dequantize DCT coefficients. */
|
|
int16x4_t tmp4 = vmul_s16(vget_low_s16(row1), quant_row1);
|
|
int16x4_t tmp5 = vmul_s16(vget_low_s16(row3), quant_row3);
|
|
int16x4_t tmp6 = vmul_s16(vget_low_s16(row5), quant_row5);
|
|
int16x4_t tmp7 = vmul_s16(vget_low_s16(row7), quant_row7);
|
|
|
|
int16x4_t z13 = vadd_s16(tmp6, tmp5); /* phase 6 */
|
|
int16x4_t neg_z10 = vsub_s16(tmp5, tmp6);
|
|
int16x4_t z11 = vadd_s16(tmp4, tmp7);
|
|
int16x4_t z12 = vsub_s16(tmp4, tmp7);
|
|
|
|
tmp7 = vadd_s16(z11, z13); /* phase 5 */
|
|
int16x4_t z11_sub_z13 = vsub_s16(z11, z13);
|
|
tmp11 = vqdmulh_lane_s16(z11_sub_z13, consts, 1);
|
|
tmp11 = vadd_s16(tmp11, z11_sub_z13);
|
|
|
|
int16x4_t z10_add_z12 = vsub_s16(z12, neg_z10);
|
|
int16x4_t z5 = vqdmulh_lane_s16(z10_add_z12, consts, 2);
|
|
z5 = vadd_s16(z5, z10_add_z12);
|
|
tmp10 = vqdmulh_lane_s16(z12, consts, 0);
|
|
tmp10 = vadd_s16(tmp10, z12);
|
|
tmp10 = vsub_s16(tmp10, z5);
|
|
tmp12 = vqdmulh_lane_s16(neg_z10, consts, 3);
|
|
tmp12 = vadd_s16(tmp12, vadd_s16(neg_z10, neg_z10));
|
|
tmp12 = vadd_s16(tmp12, z5);
|
|
|
|
tmp6 = vsub_s16(tmp12, tmp7); /* phase 2 */
|
|
tmp5 = vsub_s16(tmp11, tmp6);
|
|
tmp4 = vadd_s16(tmp10, tmp5);
|
|
|
|
row0 = vcombine_s16(vadd_s16(tmp0, tmp7), dcval);
|
|
row7 = vcombine_s16(vsub_s16(tmp0, tmp7), dcval);
|
|
row1 = vcombine_s16(vadd_s16(tmp1, tmp6), dcval);
|
|
row6 = vcombine_s16(vsub_s16(tmp1, tmp6), dcval);
|
|
row2 = vcombine_s16(vadd_s16(tmp2, tmp5), dcval);
|
|
row5 = vcombine_s16(vsub_s16(tmp2, tmp5), dcval);
|
|
row4 = vcombine_s16(vadd_s16(tmp3, tmp4), dcval);
|
|
row3 = vcombine_s16(vsub_s16(tmp3, tmp4), dcval);
|
|
} else {
|
|
/* Some AC coefficients are non-zero; full IDCT calculation required. */
|
|
|
|
/* Load quantization table. */
|
|
int16x8_t quant_row1 = vld1q_s16(quantptr + 1 * DCTSIZE);
|
|
int16x8_t quant_row2 = vld1q_s16(quantptr + 2 * DCTSIZE);
|
|
int16x8_t quant_row3 = vld1q_s16(quantptr + 3 * DCTSIZE);
|
|
int16x8_t quant_row4 = vld1q_s16(quantptr + 4 * DCTSIZE);
|
|
int16x8_t quant_row5 = vld1q_s16(quantptr + 5 * DCTSIZE);
|
|
int16x8_t quant_row6 = vld1q_s16(quantptr + 6 * DCTSIZE);
|
|
int16x8_t quant_row7 = vld1q_s16(quantptr + 7 * DCTSIZE);
|
|
|
|
/* Even part: dequantize DCT coefficients. */
|
|
int16x8_t tmp0 = row0;
|
|
int16x8_t tmp1 = vmulq_s16(row2, quant_row2);
|
|
int16x8_t tmp2 = vmulq_s16(row4, quant_row4);
|
|
int16x8_t tmp3 = vmulq_s16(row6, quant_row6);
|
|
|
|
int16x8_t tmp10 = vaddq_s16(tmp0, tmp2); /* phase 3 */
|
|
int16x8_t tmp11 = vsubq_s16(tmp0, tmp2);
|
|
|
|
int16x8_t tmp13 = vaddq_s16(tmp1, tmp3); /* phases 5-3 */
|
|
int16x8_t tmp1_sub_tmp3 = vsubq_s16(tmp1, tmp3);
|
|
int16x8_t tmp12 = vqdmulhq_lane_s16(tmp1_sub_tmp3, consts, 1);
|
|
tmp12 = vaddq_s16(tmp12, tmp1_sub_tmp3);
|
|
tmp12 = vsubq_s16(tmp12, tmp13);
|
|
|
|
tmp0 = vaddq_s16(tmp10, tmp13); /* phase 2 */
|
|
tmp3 = vsubq_s16(tmp10, tmp13);
|
|
tmp1 = vaddq_s16(tmp11, tmp12);
|
|
tmp2 = vsubq_s16(tmp11, tmp12);
|
|
|
|
/* Odd part: dequantize DCT coefficients. */
|
|
int16x8_t tmp4 = vmulq_s16(row1, quant_row1);
|
|
int16x8_t tmp5 = vmulq_s16(row3, quant_row3);
|
|
int16x8_t tmp6 = vmulq_s16(row5, quant_row5);
|
|
int16x8_t tmp7 = vmulq_s16(row7, quant_row7);
|
|
|
|
int16x8_t z13 = vaddq_s16(tmp6, tmp5); /* phase 6 */
|
|
int16x8_t neg_z10 = vsubq_s16(tmp5, tmp6);
|
|
int16x8_t z11 = vaddq_s16(tmp4, tmp7);
|
|
int16x8_t z12 = vsubq_s16(tmp4, tmp7);
|
|
|
|
tmp7 = vaddq_s16(z11, z13); /* phase 5 */
|
|
int16x8_t z11_sub_z13 = vsubq_s16(z11, z13);
|
|
tmp11 = vqdmulhq_lane_s16(z11_sub_z13, consts, 1);
|
|
tmp11 = vaddq_s16(tmp11, z11_sub_z13);
|
|
|
|
int16x8_t z10_add_z12 = vsubq_s16(z12, neg_z10);
|
|
int16x8_t z5 = vqdmulhq_lane_s16(z10_add_z12, consts, 2);
|
|
z5 = vaddq_s16(z5, z10_add_z12);
|
|
tmp10 = vqdmulhq_lane_s16(z12, consts, 0);
|
|
tmp10 = vaddq_s16(tmp10, z12);
|
|
tmp10 = vsubq_s16(tmp10, z5);
|
|
tmp12 = vqdmulhq_lane_s16(neg_z10, consts, 3);
|
|
tmp12 = vaddq_s16(tmp12, vaddq_s16(neg_z10, neg_z10));
|
|
tmp12 = vaddq_s16(tmp12, z5);
|
|
|
|
tmp6 = vsubq_s16(tmp12, tmp7); /* phase 2 */
|
|
tmp5 = vsubq_s16(tmp11, tmp6);
|
|
tmp4 = vaddq_s16(tmp10, tmp5);
|
|
|
|
row0 = vaddq_s16(tmp0, tmp7);
|
|
row7 = vsubq_s16(tmp0, tmp7);
|
|
row1 = vaddq_s16(tmp1, tmp6);
|
|
row6 = vsubq_s16(tmp1, tmp6);
|
|
row2 = vaddq_s16(tmp2, tmp5);
|
|
row5 = vsubq_s16(tmp2, tmp5);
|
|
row4 = vaddq_s16(tmp3, tmp4);
|
|
row3 = vsubq_s16(tmp3, tmp4);
|
|
}
|
|
|
|
/* Transpose rows to work on columns in pass 2. */
|
|
int16x8x2_t rows_01 = vtrnq_s16(row0, row1);
|
|
int16x8x2_t rows_23 = vtrnq_s16(row2, row3);
|
|
int16x8x2_t rows_45 = vtrnq_s16(row4, row5);
|
|
int16x8x2_t rows_67 = vtrnq_s16(row6, row7);
|
|
|
|
int32x4x2_t rows_0145_l = vtrnq_s32(vreinterpretq_s32_s16(rows_01.val[0]),
|
|
vreinterpretq_s32_s16(rows_45.val[0]));
|
|
int32x4x2_t rows_0145_h = vtrnq_s32(vreinterpretq_s32_s16(rows_01.val[1]),
|
|
vreinterpretq_s32_s16(rows_45.val[1]));
|
|
int32x4x2_t rows_2367_l = vtrnq_s32(vreinterpretq_s32_s16(rows_23.val[0]),
|
|
vreinterpretq_s32_s16(rows_67.val[0]));
|
|
int32x4x2_t rows_2367_h = vtrnq_s32(vreinterpretq_s32_s16(rows_23.val[1]),
|
|
vreinterpretq_s32_s16(rows_67.val[1]));
|
|
|
|
int32x4x2_t cols_04 = vzipq_s32(rows_0145_l.val[0], rows_2367_l.val[0]);
|
|
int32x4x2_t cols_15 = vzipq_s32(rows_0145_h.val[0], rows_2367_h.val[0]);
|
|
int32x4x2_t cols_26 = vzipq_s32(rows_0145_l.val[1], rows_2367_l.val[1]);
|
|
int32x4x2_t cols_37 = vzipq_s32(rows_0145_h.val[1], rows_2367_h.val[1]);
|
|
|
|
int16x8_t col0 = vreinterpretq_s16_s32(cols_04.val[0]);
|
|
int16x8_t col1 = vreinterpretq_s16_s32(cols_15.val[0]);
|
|
int16x8_t col2 = vreinterpretq_s16_s32(cols_26.val[0]);
|
|
int16x8_t col3 = vreinterpretq_s16_s32(cols_37.val[0]);
|
|
int16x8_t col4 = vreinterpretq_s16_s32(cols_04.val[1]);
|
|
int16x8_t col5 = vreinterpretq_s16_s32(cols_15.val[1]);
|
|
int16x8_t col6 = vreinterpretq_s16_s32(cols_26.val[1]);
|
|
int16x8_t col7 = vreinterpretq_s16_s32(cols_37.val[1]);
|
|
|
|
/* 1-D IDCT, pass 2 */
|
|
|
|
/* Even part */
|
|
int16x8_t tmp10 = vaddq_s16(col0, col4);
|
|
int16x8_t tmp11 = vsubq_s16(col0, col4);
|
|
|
|
int16x8_t tmp13 = vaddq_s16(col2, col6);
|
|
int16x8_t col2_sub_col6 = vsubq_s16(col2, col6);
|
|
int16x8_t tmp12 = vqdmulhq_lane_s16(col2_sub_col6, consts, 1);
|
|
tmp12 = vaddq_s16(tmp12, col2_sub_col6);
|
|
tmp12 = vsubq_s16(tmp12, tmp13);
|
|
|
|
int16x8_t tmp0 = vaddq_s16(tmp10, tmp13);
|
|
int16x8_t tmp3 = vsubq_s16(tmp10, tmp13);
|
|
int16x8_t tmp1 = vaddq_s16(tmp11, tmp12);
|
|
int16x8_t tmp2 = vsubq_s16(tmp11, tmp12);
|
|
|
|
/* Odd part */
|
|
int16x8_t z13 = vaddq_s16(col5, col3);
|
|
int16x8_t neg_z10 = vsubq_s16(col3, col5);
|
|
int16x8_t z11 = vaddq_s16(col1, col7);
|
|
int16x8_t z12 = vsubq_s16(col1, col7);
|
|
|
|
int16x8_t tmp7 = vaddq_s16(z11, z13); /* phase 5 */
|
|
int16x8_t z11_sub_z13 = vsubq_s16(z11, z13);
|
|
tmp11 = vqdmulhq_lane_s16(z11_sub_z13, consts, 1);
|
|
tmp11 = vaddq_s16(tmp11, z11_sub_z13);
|
|
|
|
int16x8_t z10_add_z12 = vsubq_s16(z12, neg_z10);
|
|
int16x8_t z5 = vqdmulhq_lane_s16(z10_add_z12, consts, 2);
|
|
z5 = vaddq_s16(z5, z10_add_z12);
|
|
tmp10 = vqdmulhq_lane_s16(z12, consts, 0);
|
|
tmp10 = vaddq_s16(tmp10, z12);
|
|
tmp10 = vsubq_s16(tmp10, z5);
|
|
tmp12 = vqdmulhq_lane_s16(neg_z10, consts, 3);
|
|
tmp12 = vaddq_s16(tmp12, vaddq_s16(neg_z10, neg_z10));
|
|
tmp12 = vaddq_s16(tmp12, z5);
|
|
|
|
int16x8_t tmp6 = vsubq_s16(tmp12, tmp7); /* phase 2 */
|
|
int16x8_t tmp5 = vsubq_s16(tmp11, tmp6);
|
|
int16x8_t tmp4 = vaddq_s16(tmp10, tmp5);
|
|
|
|
col0 = vaddq_s16(tmp0, tmp7);
|
|
col7 = vsubq_s16(tmp0, tmp7);
|
|
col1 = vaddq_s16(tmp1, tmp6);
|
|
col6 = vsubq_s16(tmp1, tmp6);
|
|
col2 = vaddq_s16(tmp2, tmp5);
|
|
col5 = vsubq_s16(tmp2, tmp5);
|
|
col4 = vaddq_s16(tmp3, tmp4);
|
|
col3 = vsubq_s16(tmp3, tmp4);
|
|
|
|
/* Scale down by a factor of 8, narrowing to 8-bit. */
|
|
int8x16_t cols_01_s8 = vcombine_s8(vqshrn_n_s16(col0, PASS1_BITS + 3),
|
|
vqshrn_n_s16(col1, PASS1_BITS + 3));
|
|
int8x16_t cols_45_s8 = vcombine_s8(vqshrn_n_s16(col4, PASS1_BITS + 3),
|
|
vqshrn_n_s16(col5, PASS1_BITS + 3));
|
|
int8x16_t cols_23_s8 = vcombine_s8(vqshrn_n_s16(col2, PASS1_BITS + 3),
|
|
vqshrn_n_s16(col3, PASS1_BITS + 3));
|
|
int8x16_t cols_67_s8 = vcombine_s8(vqshrn_n_s16(col6, PASS1_BITS + 3),
|
|
vqshrn_n_s16(col7, PASS1_BITS + 3));
|
|
/* Clamp to range [0-255]. */
|
|
uint8x16_t cols_01 =
|
|
vreinterpretq_u8_s8
|
|
(vaddq_s8(cols_01_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE))));
|
|
uint8x16_t cols_45 =
|
|
vreinterpretq_u8_s8
|
|
(vaddq_s8(cols_45_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE))));
|
|
uint8x16_t cols_23 =
|
|
vreinterpretq_u8_s8
|
|
(vaddq_s8(cols_23_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE))));
|
|
uint8x16_t cols_67 =
|
|
vreinterpretq_u8_s8
|
|
(vaddq_s8(cols_67_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE))));
|
|
|
|
/* Transpose block to prepare for store. */
|
|
uint32x4x2_t cols_0415 = vzipq_u32(vreinterpretq_u32_u8(cols_01),
|
|
vreinterpretq_u32_u8(cols_45));
|
|
uint32x4x2_t cols_2637 = vzipq_u32(vreinterpretq_u32_u8(cols_23),
|
|
vreinterpretq_u32_u8(cols_67));
|
|
|
|
uint8x16x2_t cols_0145 = vtrnq_u8(vreinterpretq_u8_u32(cols_0415.val[0]),
|
|
vreinterpretq_u8_u32(cols_0415.val[1]));
|
|
uint8x16x2_t cols_2367 = vtrnq_u8(vreinterpretq_u8_u32(cols_2637.val[0]),
|
|
vreinterpretq_u8_u32(cols_2637.val[1]));
|
|
uint16x8x2_t rows_0426 = vtrnq_u16(vreinterpretq_u16_u8(cols_0145.val[0]),
|
|
vreinterpretq_u16_u8(cols_2367.val[0]));
|
|
uint16x8x2_t rows_1537 = vtrnq_u16(vreinterpretq_u16_u8(cols_0145.val[1]),
|
|
vreinterpretq_u16_u8(cols_2367.val[1]));
|
|
|
|
uint8x16_t rows_04 = vreinterpretq_u8_u16(rows_0426.val[0]);
|
|
uint8x16_t rows_15 = vreinterpretq_u8_u16(rows_1537.val[0]);
|
|
uint8x16_t rows_26 = vreinterpretq_u8_u16(rows_0426.val[1]);
|
|
uint8x16_t rows_37 = vreinterpretq_u8_u16(rows_1537.val[1]);
|
|
|
|
JSAMPROW outptr0 = output_buf + DCTSIZE * 0;
|
|
JSAMPROW outptr1 = output_buf + DCTSIZE * 1;
|
|
JSAMPROW outptr2 = output_buf + DCTSIZE * 2;
|
|
JSAMPROW outptr3 = output_buf + DCTSIZE * 3;
|
|
JSAMPROW outptr4 = output_buf + DCTSIZE * 4;
|
|
JSAMPROW outptr5 = output_buf + DCTSIZE * 5;
|
|
JSAMPROW outptr6 = output_buf + DCTSIZE * 6;
|
|
JSAMPROW outptr7 = output_buf + DCTSIZE * 7;
|
|
|
|
/* Store DCT block to memory. */
|
|
vst1q_lane_u64((uint64_t *)outptr0, vreinterpretq_u64_u8(rows_04), 0);
|
|
vst1q_lane_u64((uint64_t *)outptr1, vreinterpretq_u64_u8(rows_15), 0);
|
|
vst1q_lane_u64((uint64_t *)outptr2, vreinterpretq_u64_u8(rows_26), 0);
|
|
vst1q_lane_u64((uint64_t *)outptr3, vreinterpretq_u64_u8(rows_37), 0);
|
|
vst1q_lane_u64((uint64_t *)outptr4, vreinterpretq_u64_u8(rows_04), 1);
|
|
vst1q_lane_u64((uint64_t *)outptr5, vreinterpretq_u64_u8(rows_15), 1);
|
|
vst1q_lane_u64((uint64_t *)outptr6, vreinterpretq_u64_u8(rows_26), 1);
|
|
vst1q_lane_u64((uint64_t *)outptr7, vreinterpretq_u64_u8(rows_37), 1);
|
|
}
|
|
|
|
#endif
|