mirror of
https://github.com/Swiftgram/Telegram-iOS.git
synced 2025-06-16 05:55:20 +00:00
1072 lines
37 KiB
C++
1072 lines
37 KiB
C++
/*
|
|
* Copyright (C) 2005, 2006 Apple Computer, Inc. All rights reserved.
|
|
* Copyright (C) 2009 Torch Mobile, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "TransformationMatrix.h"
|
|
#include "FloatConversion.h"
|
|
#include <math.h>
|
|
|
|
inline double deg2rad(double d) { return d * M_PI / 180.0; }
|
|
inline double rad2deg(double r) { return r * 180.0 / M_PI; }
|
|
inline double deg2grad(double d) { return d * 400.0 / 360.0; }
|
|
inline double grad2deg(double g) { return g * 360.0 / 400.0; }
|
|
inline double turn2deg(double t) { return t * 360.0; }
|
|
inline double deg2turn(double d) { return d / 360.0; }
|
|
inline double rad2grad(double r) { return r * 200.0 / M_PI; }
|
|
inline double grad2rad(double g) { return g * M_PI / 200.0; }
|
|
|
|
//using namespace std;
|
|
|
|
namespace WebCore {
|
|
|
|
//
|
|
// Supporting Math Functions
|
|
//
|
|
// This is a set of function from various places (attributed inline) to do things like
|
|
// inversion and decomposition of a 4x4 matrix. They are used throughout the code
|
|
//
|
|
|
|
//
|
|
// Adapted from Matrix Inversion by Richard Carling, Graphics Gems <http://tog.acm.org/GraphicsGems/index.html>.
|
|
|
|
// EULA: The Graphics Gems code is copyright-protected. In other words, you cannot claim the text of the code
|
|
// as your own and resell it. Using the code is permitted in any program, product, or library, non-commercial
|
|
// or commercial. Giving credit is not required, though is a nice gesture. The code comes as-is, and if there
|
|
// are any flaws or problems with any Gems code, nobody involved with Gems - authors, editors, publishers, or
|
|
// webmasters - are to be held responsible. Basically, don't be a jerk, and remember that anything free comes
|
|
// with no guarantee.
|
|
|
|
// A clarification about the storage of matrix elements
|
|
//
|
|
// This class uses a 2 dimensional array internally to store the elements of the matrix. The first index into
|
|
// the array refers to the column that the element lies in; the second index refers to the row.
|
|
//
|
|
// In other words, this is the layout of the matrix:
|
|
//
|
|
// | m_matrix[0][0] m_matrix[1][0] m_matrix[2][0] m_matrix[3][0] |
|
|
// | m_matrix[0][1] m_matrix[1][1] m_matrix[2][1] m_matrix[3][1] |
|
|
// | m_matrix[0][2] m_matrix[1][2] m_matrix[2][2] m_matrix[3][2] |
|
|
// | m_matrix[0][3] m_matrix[1][3] m_matrix[2][3] m_matrix[3][3] |
|
|
|
|
typedef double Vector4[4];
|
|
typedef double Vector3[3];
|
|
|
|
const double SMALL_NUMBER = 1.e-8;
|
|
|
|
// inverse(original_matrix, inverse_matrix)
|
|
//
|
|
// calculate the inverse of a 4x4 matrix
|
|
//
|
|
// -1
|
|
// A = ___1__ adjoint A
|
|
// det A
|
|
|
|
// double = determinant2x2(double a, double b, double c, double d)
|
|
//
|
|
// calculate the determinant of a 2x2 matrix.
|
|
|
|
static double determinant2x2(double a, double b, double c, double d)
|
|
{
|
|
return a * d - b * c;
|
|
}
|
|
|
|
// double = determinant3x3(a1, a2, a3, b1, b2, b3, c1, c2, c3)
|
|
//
|
|
// Calculate the determinant of a 3x3 matrix
|
|
// in the form
|
|
//
|
|
// | a1, b1, c1 |
|
|
// | a2, b2, c2 |
|
|
// | a3, b3, c3 |
|
|
|
|
static double determinant3x3(double a1, double a2, double a3, double b1, double b2, double b3, double c1, double c2, double c3)
|
|
{
|
|
return a1 * determinant2x2(b2, b3, c2, c3)
|
|
- b1 * determinant2x2(a2, a3, c2, c3)
|
|
+ c1 * determinant2x2(a2, a3, b2, b3);
|
|
}
|
|
|
|
// double = determinant4x4(matrix)
|
|
//
|
|
// calculate the determinant of a 4x4 matrix.
|
|
|
|
static double determinant4x4(const TransformationMatrix::Matrix4& m)
|
|
{
|
|
// Assign to individual variable names to aid selecting
|
|
// correct elements
|
|
|
|
double a1 = m[0][0];
|
|
double b1 = m[0][1];
|
|
double c1 = m[0][2];
|
|
double d1 = m[0][3];
|
|
|
|
double a2 = m[1][0];
|
|
double b2 = m[1][1];
|
|
double c2 = m[1][2];
|
|
double d2 = m[1][3];
|
|
|
|
double a3 = m[2][0];
|
|
double b3 = m[2][1];
|
|
double c3 = m[2][2];
|
|
double d3 = m[2][3];
|
|
|
|
double a4 = m[3][0];
|
|
double b4 = m[3][1];
|
|
double c4 = m[3][2];
|
|
double d4 = m[3][3];
|
|
|
|
return a1 * determinant3x3(b2, b3, b4, c2, c3, c4, d2, d3, d4)
|
|
- b1 * determinant3x3(a2, a3, a4, c2, c3, c4, d2, d3, d4)
|
|
+ c1 * determinant3x3(a2, a3, a4, b2, b3, b4, d2, d3, d4)
|
|
- d1 * determinant3x3(a2, a3, a4, b2, b3, b4, c2, c3, c4);
|
|
}
|
|
|
|
// adjoint( original_matrix, inverse_matrix )
|
|
//
|
|
// calculate the adjoint of a 4x4 matrix
|
|
//
|
|
// Let a denote the minor determinant of matrix A obtained by
|
|
// ij
|
|
//
|
|
// deleting the ith row and jth column from A.
|
|
//
|
|
// i+j
|
|
// Let b = (-1) a
|
|
// ij ji
|
|
//
|
|
// The matrix B = (b ) is the adjoint of A
|
|
// ij
|
|
|
|
static void adjoint(const TransformationMatrix::Matrix4& matrix, TransformationMatrix::Matrix4& result)
|
|
{
|
|
// Assign to individual variable names to aid
|
|
// selecting correct values
|
|
double a1 = matrix[0][0];
|
|
double b1 = matrix[0][1];
|
|
double c1 = matrix[0][2];
|
|
double d1 = matrix[0][3];
|
|
|
|
double a2 = matrix[1][0];
|
|
double b2 = matrix[1][1];
|
|
double c2 = matrix[1][2];
|
|
double d2 = matrix[1][3];
|
|
|
|
double a3 = matrix[2][0];
|
|
double b3 = matrix[2][1];
|
|
double c3 = matrix[2][2];
|
|
double d3 = matrix[2][3];
|
|
|
|
double a4 = matrix[3][0];
|
|
double b4 = matrix[3][1];
|
|
double c4 = matrix[3][2];
|
|
double d4 = matrix[3][3];
|
|
|
|
// Row column labeling reversed since we transpose rows & columns
|
|
result[0][0] = determinant3x3(b2, b3, b4, c2, c3, c4, d2, d3, d4);
|
|
result[1][0] = - determinant3x3(a2, a3, a4, c2, c3, c4, d2, d3, d4);
|
|
result[2][0] = determinant3x3(a2, a3, a4, b2, b3, b4, d2, d3, d4);
|
|
result[3][0] = - determinant3x3(a2, a3, a4, b2, b3, b4, c2, c3, c4);
|
|
|
|
result[0][1] = - determinant3x3(b1, b3, b4, c1, c3, c4, d1, d3, d4);
|
|
result[1][1] = determinant3x3(a1, a3, a4, c1, c3, c4, d1, d3, d4);
|
|
result[2][1] = - determinant3x3(a1, a3, a4, b1, b3, b4, d1, d3, d4);
|
|
result[3][1] = determinant3x3(a1, a3, a4, b1, b3, b4, c1, c3, c4);
|
|
|
|
result[0][2] = determinant3x3(b1, b2, b4, c1, c2, c4, d1, d2, d4);
|
|
result[1][2] = - determinant3x3(a1, a2, a4, c1, c2, c4, d1, d2, d4);
|
|
result[2][2] = determinant3x3(a1, a2, a4, b1, b2, b4, d1, d2, d4);
|
|
result[3][2] = - determinant3x3(a1, a2, a4, b1, b2, b4, c1, c2, c4);
|
|
|
|
result[0][3] = - determinant3x3(b1, b2, b3, c1, c2, c3, d1, d2, d3);
|
|
result[1][3] = determinant3x3(a1, a2, a3, c1, c2, c3, d1, d2, d3);
|
|
result[2][3] = - determinant3x3(a1, a2, a3, b1, b2, b3, d1, d2, d3);
|
|
result[3][3] = determinant3x3(a1, a2, a3, b1, b2, b3, c1, c2, c3);
|
|
}
|
|
|
|
// Returns false if the matrix is not invertible
|
|
static bool inverse(const TransformationMatrix::Matrix4& matrix, TransformationMatrix::Matrix4& result)
|
|
{
|
|
// Calculate the adjoint matrix
|
|
adjoint(matrix, result);
|
|
|
|
// Calculate the 4x4 determinant
|
|
// If the determinant is zero,
|
|
// then the inverse matrix is not unique.
|
|
double det = determinant4x4(matrix);
|
|
|
|
if (fabs(det) < SMALL_NUMBER)
|
|
return false;
|
|
|
|
// Scale the adjoint matrix to get the inverse
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
for (int j = 0; j < 4; j++)
|
|
result[i][j] = result[i][j] / det;
|
|
|
|
return true;
|
|
}
|
|
|
|
// End of code adapted from Matrix Inversion by Richard Carling
|
|
|
|
// Perform a decomposition on the passed matrix, return false if unsuccessful
|
|
// From Graphics Gems: unmatrix.c
|
|
|
|
// Transpose rotation portion of matrix a, return b
|
|
static void transposeMatrix4(const TransformationMatrix::Matrix4& a, TransformationMatrix::Matrix4& b)
|
|
{
|
|
for (int i = 0; i < 4; i++)
|
|
for (int j = 0; j < 4; j++)
|
|
b[i][j] = a[j][i];
|
|
}
|
|
|
|
// Multiply a homogeneous point by a matrix and return the transformed point
|
|
static void v4MulPointByMatrix(const Vector4 p, const TransformationMatrix::Matrix4& m, Vector4 result)
|
|
{
|
|
result[0] = (p[0] * m[0][0]) + (p[1] * m[1][0]) +
|
|
(p[2] * m[2][0]) + (p[3] * m[3][0]);
|
|
result[1] = (p[0] * m[0][1]) + (p[1] * m[1][1]) +
|
|
(p[2] * m[2][1]) + (p[3] * m[3][1]);
|
|
result[2] = (p[0] * m[0][2]) + (p[1] * m[1][2]) +
|
|
(p[2] * m[2][2]) + (p[3] * m[3][2]);
|
|
result[3] = (p[0] * m[0][3]) + (p[1] * m[1][3]) +
|
|
(p[2] * m[2][3]) + (p[3] * m[3][3]);
|
|
}
|
|
|
|
static double v3Length(Vector3 a)
|
|
{
|
|
return sqrt((a[0] * a[0]) + (a[1] * a[1]) + (a[2] * a[2]));
|
|
}
|
|
|
|
static void v3Scale(Vector3 v, double desiredLength)
|
|
{
|
|
double len = v3Length(v);
|
|
if (len != 0) {
|
|
double l = desiredLength / len;
|
|
v[0] *= l;
|
|
v[1] *= l;
|
|
v[2] *= l;
|
|
}
|
|
}
|
|
|
|
static double v3Dot(const Vector3 a, const Vector3 b)
|
|
{
|
|
return (a[0] * b[0]) + (a[1] * b[1]) + (a[2] * b[2]);
|
|
}
|
|
|
|
// Make a linear combination of two vectors and return the result.
|
|
// result = (a * ascl) + (b * bscl)
|
|
static void v3Combine(const Vector3 a, const Vector3 b, Vector3 result, double ascl, double bscl)
|
|
{
|
|
result[0] = (ascl * a[0]) + (bscl * b[0]);
|
|
result[1] = (ascl * a[1]) + (bscl * b[1]);
|
|
result[2] = (ascl * a[2]) + (bscl * b[2]);
|
|
}
|
|
|
|
// Return the cross product result = a cross b */
|
|
static void v3Cross(const Vector3 a, const Vector3 b, Vector3 result)
|
|
{
|
|
result[0] = (a[1] * b[2]) - (a[2] * b[1]);
|
|
result[1] = (a[2] * b[0]) - (a[0] * b[2]);
|
|
result[2] = (a[0] * b[1]) - (a[1] * b[0]);
|
|
}
|
|
|
|
static bool decompose(const TransformationMatrix::Matrix4& mat, TransformationMatrix::DecomposedType& result)
|
|
{
|
|
TransformationMatrix::Matrix4 localMatrix;
|
|
memcpy(localMatrix, mat, sizeof(TransformationMatrix::Matrix4));
|
|
|
|
// Normalize the matrix.
|
|
if (localMatrix[3][3] == 0)
|
|
return false;
|
|
|
|
int i, j;
|
|
for (i = 0; i < 4; i++)
|
|
for (j = 0; j < 4; j++)
|
|
localMatrix[i][j] /= localMatrix[3][3];
|
|
|
|
// perspectiveMatrix is used to solve for perspective, but it also provides
|
|
// an easy way to test for singularity of the upper 3x3 component.
|
|
TransformationMatrix::Matrix4 perspectiveMatrix;
|
|
memcpy(perspectiveMatrix, localMatrix, sizeof(TransformationMatrix::Matrix4));
|
|
for (i = 0; i < 3; i++)
|
|
perspectiveMatrix[i][3] = 0;
|
|
perspectiveMatrix[3][3] = 1;
|
|
|
|
if (determinant4x4(perspectiveMatrix) == 0)
|
|
return false;
|
|
|
|
// First, isolate perspective. This is the messiest.
|
|
if (localMatrix[0][3] != 0 || localMatrix[1][3] != 0 || localMatrix[2][3] != 0) {
|
|
// rightHandSide is the right hand side of the equation.
|
|
Vector4 rightHandSide;
|
|
rightHandSide[0] = localMatrix[0][3];
|
|
rightHandSide[1] = localMatrix[1][3];
|
|
rightHandSide[2] = localMatrix[2][3];
|
|
rightHandSide[3] = localMatrix[3][3];
|
|
|
|
// Solve the equation by inverting perspectiveMatrix and multiplying
|
|
// rightHandSide by the inverse. (This is the easiest way, not
|
|
// necessarily the best.)
|
|
TransformationMatrix::Matrix4 inversePerspectiveMatrix, transposedInversePerspectiveMatrix;
|
|
inverse(perspectiveMatrix, inversePerspectiveMatrix);
|
|
transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix);
|
|
|
|
Vector4 perspectivePoint;
|
|
v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint);
|
|
|
|
result.perspectiveX = perspectivePoint[0];
|
|
result.perspectiveY = perspectivePoint[1];
|
|
result.perspectiveZ = perspectivePoint[2];
|
|
result.perspectiveW = perspectivePoint[3];
|
|
|
|
// Clear the perspective partition
|
|
localMatrix[0][3] = localMatrix[1][3] = localMatrix[2][3] = 0;
|
|
localMatrix[3][3] = 1;
|
|
} else {
|
|
// No perspective.
|
|
result.perspectiveX = result.perspectiveY = result.perspectiveZ = 0;
|
|
result.perspectiveW = 1;
|
|
}
|
|
|
|
// Next take care of translation (easy).
|
|
result.translateX = localMatrix[3][0];
|
|
localMatrix[3][0] = 0;
|
|
result.translateY = localMatrix[3][1];
|
|
localMatrix[3][1] = 0;
|
|
result.translateZ = localMatrix[3][2];
|
|
localMatrix[3][2] = 0;
|
|
|
|
// Vector4 type and functions need to be added to the common set.
|
|
Vector3 row[3], pdum3;
|
|
|
|
// Now get scale and shear.
|
|
for (i = 0; i < 3; i++) {
|
|
row[i][0] = localMatrix[i][0];
|
|
row[i][1] = localMatrix[i][1];
|
|
row[i][2] = localMatrix[i][2];
|
|
}
|
|
|
|
// Compute X scale factor and normalize first row.
|
|
result.scaleX = v3Length(row[0]);
|
|
v3Scale(row[0], 1.0);
|
|
|
|
// Compute XY shear factor and make 2nd row orthogonal to 1st.
|
|
result.skewXY = v3Dot(row[0], row[1]);
|
|
v3Combine(row[1], row[0], row[1], 1.0, -result.skewXY);
|
|
|
|
// Now, compute Y scale and normalize 2nd row.
|
|
result.scaleY = v3Length(row[1]);
|
|
v3Scale(row[1], 1.0);
|
|
result.skewXY /= result.scaleY;
|
|
|
|
// Compute XZ and YZ shears, orthogonalize 3rd row.
|
|
result.skewXZ = v3Dot(row[0], row[2]);
|
|
v3Combine(row[2], row[0], row[2], 1.0, -result.skewXZ);
|
|
result.skewYZ = v3Dot(row[1], row[2]);
|
|
v3Combine(row[2], row[1], row[2], 1.0, -result.skewYZ);
|
|
|
|
// Next, get Z scale and normalize 3rd row.
|
|
result.scaleZ = v3Length(row[2]);
|
|
v3Scale(row[2], 1.0);
|
|
result.skewXZ /= result.scaleZ;
|
|
result.skewYZ /= result.scaleZ;
|
|
|
|
// At this point, the matrix (in rows[]) is orthonormal.
|
|
// Check for a coordinate system flip. If the determinant
|
|
// is -1, then negate the matrix and the scaling factors.
|
|
v3Cross(row[1], row[2], pdum3);
|
|
if (v3Dot(row[0], pdum3) < 0) {
|
|
|
|
result.scaleX *= -1;
|
|
result.scaleY *= -1;
|
|
result.scaleZ *= -1;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
row[i][0] *= -1;
|
|
row[i][1] *= -1;
|
|
row[i][2] *= -1;
|
|
}
|
|
}
|
|
|
|
// Now, get the rotations out, as described in the gem.
|
|
|
|
result.rotateY = asin(-row[0][2]);
|
|
if (cos(result.rotateY) != 0) {
|
|
result.rotateX = atan2(row[1][2], row[2][2]);
|
|
result.rotateZ = atan2(row[0][1], row[0][0]);
|
|
} else {
|
|
result.rotateX = atan2(-row[2][0], row[1][1]);
|
|
result.rotateZ = 0;
|
|
}
|
|
|
|
double s, t, x, y, z, w;
|
|
|
|
t = row[0][0] + row[1][1] + row[2][2] + 1.0;
|
|
|
|
if (t > 1e-4) {
|
|
s = 0.5 / sqrt(t);
|
|
w = 0.25 / s;
|
|
x = (row[2][1] - row[1][2]) * s;
|
|
y = (row[0][2] - row[2][0]) * s;
|
|
z = (row[1][0] - row[0][1]) * s;
|
|
} else if (row[0][0] > row[1][1] && row[0][0] > row[2][2]) {
|
|
s = sqrt (1.0 + row[0][0] - row[1][1] - row[2][2]) * 2.0; // S=4*qx
|
|
x = 0.25 * s;
|
|
y = (row[0][1] + row[1][0]) / s;
|
|
z = (row[0][2] + row[2][0]) / s;
|
|
w = (row[2][1] - row[1][2]) / s;
|
|
} else if (row[1][1] > row[2][2]) {
|
|
s = sqrt (1.0 + row[1][1] - row[0][0] - row[2][2]) * 2.0; // S=4*qy
|
|
x = (row[0][1] + row[1][0]) / s;
|
|
y = 0.25 * s;
|
|
z = (row[1][2] + row[2][1]) / s;
|
|
w = (row[0][2] - row[2][0]) / s;
|
|
} else {
|
|
s = sqrt(1.0 + row[2][2] - row[0][0] - row[1][1]) * 2.0; // S=4*qz
|
|
x = (row[0][2] + row[2][0]) / s;
|
|
y = (row[1][2] + row[2][1]) / s;
|
|
z = 0.25 * s;
|
|
w = (row[1][0] - row[0][1]) / s;
|
|
}
|
|
|
|
result.quaternionX = x;
|
|
result.quaternionY = y;
|
|
result.quaternionZ = z;
|
|
result.quaternionW = w;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Perform a spherical linear interpolation between the two
|
|
// passed quaternions with 0 <= t <= 1
|
|
static void slerp(double qa[4], const double qb[4], double t)
|
|
{
|
|
double ax, ay, az, aw;
|
|
double bx, by, bz, bw;
|
|
double cx, cy, cz, cw;
|
|
double angle;
|
|
double th, invth, scale, invscale;
|
|
|
|
ax = qa[0]; ay = qa[1]; az = qa[2]; aw = qa[3];
|
|
bx = qb[0]; by = qb[1]; bz = qb[2]; bw = qb[3];
|
|
|
|
angle = ax * bx + ay * by + az * bz + aw * bw;
|
|
|
|
if (angle < 0.0) {
|
|
ax = -ax; ay = -ay;
|
|
az = -az; aw = -aw;
|
|
angle = -angle;
|
|
}
|
|
|
|
if (angle + 1.0 > .05) {
|
|
if (1.0 - angle >= .05) {
|
|
th = acos (angle);
|
|
invth = 1.0 / sin (th);
|
|
scale = sin (th * (1.0 - t)) * invth;
|
|
invscale = sin (th * t) * invth;
|
|
} else {
|
|
scale = 1.0 - t;
|
|
invscale = t;
|
|
}
|
|
} else {
|
|
bx = -ay;
|
|
by = ax;
|
|
bz = -aw;
|
|
bw = az;
|
|
scale = sin(M_PI * (.5 - t));
|
|
invscale = sin (M_PI * t);
|
|
}
|
|
|
|
cx = ax * scale + bx * invscale;
|
|
cy = ay * scale + by * invscale;
|
|
cz = az * scale + bz * invscale;
|
|
cw = aw * scale + bw * invscale;
|
|
|
|
qa[0] = cx; qa[1] = cy; qa[2] = cz; qa[3] = cw;
|
|
}
|
|
|
|
// End of Supporting Math Functions
|
|
|
|
TransformationMatrix::TransformationMatrix(const CGAffineTransform& t)
|
|
{
|
|
setMatrix(t.a, t.b, t.c, t.d, t.tx, t.ty);
|
|
}
|
|
|
|
TransformationMatrix::TransformationMatrix(const CATransform3D& t)
|
|
{
|
|
setMatrix(
|
|
t.m11, t.m12, t.m13, t.m14,
|
|
t.m21, t.m22, t.m23, t.m24,
|
|
t.m31, t.m32, t.m33, t.m34,
|
|
t.m41, t.m42, t.m43, t.m44);
|
|
}
|
|
|
|
CATransform3D TransformationMatrix::transform3d() const
|
|
{
|
|
CATransform3D t;
|
|
t.m11 = narrowPrecisionToFloat(m11());
|
|
t.m12 = narrowPrecisionToFloat(m12());
|
|
t.m13 = narrowPrecisionToFloat(m13());
|
|
t.m14 = narrowPrecisionToFloat(m14());
|
|
t.m21 = narrowPrecisionToFloat(m21());
|
|
t.m22 = narrowPrecisionToFloat(m22());
|
|
t.m23 = narrowPrecisionToFloat(m23());
|
|
t.m24 = narrowPrecisionToFloat(m24());
|
|
t.m31 = narrowPrecisionToFloat(m31());
|
|
t.m32 = narrowPrecisionToFloat(m32());
|
|
t.m33 = narrowPrecisionToFloat(m33());
|
|
t.m34 = narrowPrecisionToFloat(m34());
|
|
t.m41 = narrowPrecisionToFloat(m41());
|
|
t.m42 = narrowPrecisionToFloat(m42());
|
|
t.m43 = narrowPrecisionToFloat(m43());
|
|
t.m44 = narrowPrecisionToFloat(m44());
|
|
return t;
|
|
}
|
|
|
|
CGAffineTransform TransformationMatrix::affineTransform () const
|
|
{
|
|
CGAffineTransform t;
|
|
t.a = narrowPrecisionToFloat(m11());
|
|
t.b = narrowPrecisionToFloat(m12());
|
|
t.c = narrowPrecisionToFloat(m21());
|
|
t.d = narrowPrecisionToFloat(m22());
|
|
t.tx = narrowPrecisionToFloat(m41());
|
|
t.ty = narrowPrecisionToFloat(m42());
|
|
return t;
|
|
}
|
|
|
|
TransformationMatrix::operator CATransform3D() const
|
|
{
|
|
return transform3d();
|
|
}
|
|
|
|
TransformationMatrix& TransformationMatrix::scale(double s)
|
|
{
|
|
return scaleNonUniform(s, s);
|
|
}
|
|
|
|
TransformationMatrix& TransformationMatrix::rotateFromVector(double x, double y)
|
|
{
|
|
return rotate(rad2deg(atan2(y, x)));
|
|
}
|
|
|
|
TransformationMatrix& TransformationMatrix::flipX()
|
|
{
|
|
return scaleNonUniform(-1.0, 1.0);
|
|
}
|
|
|
|
TransformationMatrix& TransformationMatrix::flipY()
|
|
{
|
|
return scaleNonUniform(1.0, -1.0);
|
|
}
|
|
|
|
TransformationMatrix& TransformationMatrix::scaleNonUniform(double sx, double sy)
|
|
{
|
|
m_matrix[0][0] *= sx;
|
|
m_matrix[0][1] *= sx;
|
|
m_matrix[0][2] *= sx;
|
|
m_matrix[0][3] *= sx;
|
|
|
|
m_matrix[1][0] *= sy;
|
|
m_matrix[1][1] *= sy;
|
|
m_matrix[1][2] *= sy;
|
|
m_matrix[1][3] *= sy;
|
|
return *this;
|
|
}
|
|
|
|
TransformationMatrix& TransformationMatrix::scale3d(double sx, double sy, double sz)
|
|
{
|
|
scaleNonUniform(sx, sy);
|
|
|
|
m_matrix[2][0] *= sz;
|
|
m_matrix[2][1] *= sz;
|
|
m_matrix[2][2] *= sz;
|
|
m_matrix[2][3] *= sz;
|
|
return *this;
|
|
}
|
|
|
|
TransformationMatrix& TransformationMatrix::rotate3d(double x, double y, double z, double angle)
|
|
{
|
|
// Normalize the axis of rotation
|
|
double length = sqrt(x * x + y * y + z * z);
|
|
if (length == 0) {
|
|
// A direction vector that cannot be normalized, such as [0, 0, 0], will cause the rotation to not be applied.
|
|
return *this;
|
|
} else if (length != 1) {
|
|
x /= length;
|
|
y /= length;
|
|
z /= length;
|
|
}
|
|
|
|
// Angles are in degrees. Switch to radians.
|
|
angle = deg2rad(angle);
|
|
|
|
double sinTheta = sin(angle);
|
|
double cosTheta = cos(angle);
|
|
|
|
TransformationMatrix mat;
|
|
|
|
// Optimize cases where the axis is along a major axis
|
|
if (x == 1.0 && y == 0.0 && z == 0.0) {
|
|
mat.m_matrix[0][0] = 1.0;
|
|
mat.m_matrix[0][1] = 0.0;
|
|
mat.m_matrix[0][2] = 0.0;
|
|
mat.m_matrix[1][0] = 0.0;
|
|
mat.m_matrix[1][1] = cosTheta;
|
|
mat.m_matrix[1][2] = sinTheta;
|
|
mat.m_matrix[2][0] = 0.0;
|
|
mat.m_matrix[2][1] = -sinTheta;
|
|
mat.m_matrix[2][2] = cosTheta;
|
|
mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0;
|
|
mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0;
|
|
mat.m_matrix[3][3] = 1.0;
|
|
} else if (x == 0.0 && y == 1.0 && z == 0.0) {
|
|
mat.m_matrix[0][0] = cosTheta;
|
|
mat.m_matrix[0][1] = 0.0;
|
|
mat.m_matrix[0][2] = -sinTheta;
|
|
mat.m_matrix[1][0] = 0.0;
|
|
mat.m_matrix[1][1] = 1.0;
|
|
mat.m_matrix[1][2] = 0.0;
|
|
mat.m_matrix[2][0] = sinTheta;
|
|
mat.m_matrix[2][1] = 0.0;
|
|
mat.m_matrix[2][2] = cosTheta;
|
|
mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0;
|
|
mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0;
|
|
mat.m_matrix[3][3] = 1.0;
|
|
} else if (x == 0.0 && y == 0.0 && z == 1.0) {
|
|
mat.m_matrix[0][0] = cosTheta;
|
|
mat.m_matrix[0][1] = sinTheta;
|
|
mat.m_matrix[0][2] = 0.0;
|
|
mat.m_matrix[1][0] = -sinTheta;
|
|
mat.m_matrix[1][1] = cosTheta;
|
|
mat.m_matrix[1][2] = 0.0;
|
|
mat.m_matrix[2][0] = 0.0;
|
|
mat.m_matrix[2][1] = 0.0;
|
|
mat.m_matrix[2][2] = 1.0;
|
|
mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0;
|
|
mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0;
|
|
mat.m_matrix[3][3] = 1.0;
|
|
} else {
|
|
// This case is the rotation about an arbitrary unit vector.
|
|
//
|
|
// Formula is adapted from Wikipedia article on Rotation matrix,
|
|
// http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
|
|
//
|
|
// An alternate resource with the same matrix: http://www.fastgraph.com/makegames/3drotation/
|
|
//
|
|
double oneMinusCosTheta = 1 - cosTheta;
|
|
mat.m_matrix[0][0] = cosTheta + x * x * oneMinusCosTheta;
|
|
mat.m_matrix[0][1] = y * x * oneMinusCosTheta + z * sinTheta;
|
|
mat.m_matrix[0][2] = z * x * oneMinusCosTheta - y * sinTheta;
|
|
mat.m_matrix[1][0] = x * y * oneMinusCosTheta - z * sinTheta;
|
|
mat.m_matrix[1][1] = cosTheta + y * y * oneMinusCosTheta;
|
|
mat.m_matrix[1][2] = z * y * oneMinusCosTheta + x * sinTheta;
|
|
mat.m_matrix[2][0] = x * z * oneMinusCosTheta + y * sinTheta;
|
|
mat.m_matrix[2][1] = y * z * oneMinusCosTheta - x * sinTheta;
|
|
mat.m_matrix[2][2] = cosTheta + z * z * oneMinusCosTheta;
|
|
mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0;
|
|
mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0;
|
|
mat.m_matrix[3][3] = 1.0;
|
|
}
|
|
multiply(mat);
|
|
return *this;
|
|
}
|
|
|
|
TransformationMatrix& TransformationMatrix::rotate3d(double rx, double ry, double rz)
|
|
{
|
|
// Angles are in degrees. Switch to radians.
|
|
rx = deg2rad(rx);
|
|
ry = deg2rad(ry);
|
|
rz = deg2rad(rz);
|
|
|
|
TransformationMatrix mat;
|
|
|
|
double sinTheta = sin(rz);
|
|
double cosTheta = cos(rz);
|
|
|
|
mat.m_matrix[0][0] = cosTheta;
|
|
mat.m_matrix[0][1] = sinTheta;
|
|
mat.m_matrix[0][2] = 0.0;
|
|
mat.m_matrix[1][0] = -sinTheta;
|
|
mat.m_matrix[1][1] = cosTheta;
|
|
mat.m_matrix[1][2] = 0.0;
|
|
mat.m_matrix[2][0] = 0.0;
|
|
mat.m_matrix[2][1] = 0.0;
|
|
mat.m_matrix[2][2] = 1.0;
|
|
mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0;
|
|
mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0;
|
|
mat.m_matrix[3][3] = 1.0;
|
|
|
|
TransformationMatrix rmat(mat);
|
|
|
|
sinTheta = sin(ry);
|
|
cosTheta = cos(ry);
|
|
|
|
mat.m_matrix[0][0] = cosTheta;
|
|
mat.m_matrix[0][1] = 0.0;
|
|
mat.m_matrix[0][2] = -sinTheta;
|
|
mat.m_matrix[1][0] = 0.0;
|
|
mat.m_matrix[1][1] = 1.0;
|
|
mat.m_matrix[1][2] = 0.0;
|
|
mat.m_matrix[2][0] = sinTheta;
|
|
mat.m_matrix[2][1] = 0.0;
|
|
mat.m_matrix[2][2] = cosTheta;
|
|
mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0;
|
|
mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0;
|
|
mat.m_matrix[3][3] = 1.0;
|
|
|
|
rmat.multiply(mat);
|
|
|
|
sinTheta = sin(rx);
|
|
cosTheta = cos(rx);
|
|
|
|
mat.m_matrix[0][0] = 1.0;
|
|
mat.m_matrix[0][1] = 0.0;
|
|
mat.m_matrix[0][2] = 0.0;
|
|
mat.m_matrix[1][0] = 0.0;
|
|
mat.m_matrix[1][1] = cosTheta;
|
|
mat.m_matrix[1][2] = sinTheta;
|
|
mat.m_matrix[2][0] = 0.0;
|
|
mat.m_matrix[2][1] = -sinTheta;
|
|
mat.m_matrix[2][2] = cosTheta;
|
|
mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0;
|
|
mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0;
|
|
mat.m_matrix[3][3] = 1.0;
|
|
|
|
rmat.multiply(mat);
|
|
|
|
multiply(rmat);
|
|
return *this;
|
|
}
|
|
|
|
TransformationMatrix& TransformationMatrix::translate(double tx, double ty)
|
|
{
|
|
m_matrix[3][0] += tx * m_matrix[0][0] + ty * m_matrix[1][0];
|
|
m_matrix[3][1] += tx * m_matrix[0][1] + ty * m_matrix[1][1];
|
|
m_matrix[3][2] += tx * m_matrix[0][2] + ty * m_matrix[1][2];
|
|
m_matrix[3][3] += tx * m_matrix[0][3] + ty * m_matrix[1][3];
|
|
return *this;
|
|
}
|
|
|
|
TransformationMatrix& TransformationMatrix::translate3d(double tx, double ty, double tz)
|
|
{
|
|
m_matrix[3][0] += tx * m_matrix[0][0] + ty * m_matrix[1][0] + tz * m_matrix[2][0];
|
|
m_matrix[3][1] += tx * m_matrix[0][1] + ty * m_matrix[1][1] + tz * m_matrix[2][1];
|
|
m_matrix[3][2] += tx * m_matrix[0][2] + ty * m_matrix[1][2] + tz * m_matrix[2][2];
|
|
m_matrix[3][3] += tx * m_matrix[0][3] + ty * m_matrix[1][3] + tz * m_matrix[2][3];
|
|
return *this;
|
|
}
|
|
|
|
TransformationMatrix& TransformationMatrix::translateRight(double tx, double ty)
|
|
{
|
|
if (tx != 0) {
|
|
m_matrix[0][0] += m_matrix[0][3] * tx;
|
|
m_matrix[1][0] += m_matrix[1][3] * tx;
|
|
m_matrix[2][0] += m_matrix[2][3] * tx;
|
|
m_matrix[3][0] += m_matrix[3][3] * tx;
|
|
}
|
|
|
|
if (ty != 0) {
|
|
m_matrix[0][1] += m_matrix[0][3] * ty;
|
|
m_matrix[1][1] += m_matrix[1][3] * ty;
|
|
m_matrix[2][1] += m_matrix[2][3] * ty;
|
|
m_matrix[3][1] += m_matrix[3][3] * ty;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
TransformationMatrix& TransformationMatrix::translateRight3d(double tx, double ty, double tz)
|
|
{
|
|
translateRight(tx, ty);
|
|
if (tz != 0) {
|
|
m_matrix[0][2] += m_matrix[0][3] * tz;
|
|
m_matrix[1][2] += m_matrix[1][3] * tz;
|
|
m_matrix[2][2] += m_matrix[2][3] * tz;
|
|
m_matrix[3][2] += m_matrix[3][3] * tz;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
TransformationMatrix& TransformationMatrix::skew(double sx, double sy)
|
|
{
|
|
// angles are in degrees. Switch to radians
|
|
sx = deg2rad(sx);
|
|
sy = deg2rad(sy);
|
|
|
|
TransformationMatrix mat;
|
|
mat.m_matrix[0][1] = tan(sy); // note that the y shear goes in the first row
|
|
mat.m_matrix[1][0] = tan(sx); // and the x shear in the second row
|
|
|
|
multiply(mat);
|
|
return *this;
|
|
}
|
|
|
|
TransformationMatrix& TransformationMatrix::applyPerspective(double p)
|
|
{
|
|
TransformationMatrix mat;
|
|
if (p != 0)
|
|
mat.m_matrix[2][3] = -1/p;
|
|
|
|
multiply(mat);
|
|
return *this;
|
|
}
|
|
|
|
// this = mat * this.
|
|
TransformationMatrix& TransformationMatrix::multiply(const TransformationMatrix& mat)
|
|
{
|
|
Matrix4 tmp;
|
|
|
|
tmp[0][0] = (mat.m_matrix[0][0] * m_matrix[0][0] + mat.m_matrix[0][1] * m_matrix[1][0]
|
|
+ mat.m_matrix[0][2] * m_matrix[2][0] + mat.m_matrix[0][3] * m_matrix[3][0]);
|
|
tmp[0][1] = (mat.m_matrix[0][0] * m_matrix[0][1] + mat.m_matrix[0][1] * m_matrix[1][1]
|
|
+ mat.m_matrix[0][2] * m_matrix[2][1] + mat.m_matrix[0][3] * m_matrix[3][1]);
|
|
tmp[0][2] = (mat.m_matrix[0][0] * m_matrix[0][2] + mat.m_matrix[0][1] * m_matrix[1][2]
|
|
+ mat.m_matrix[0][2] * m_matrix[2][2] + mat.m_matrix[0][3] * m_matrix[3][2]);
|
|
tmp[0][3] = (mat.m_matrix[0][0] * m_matrix[0][3] + mat.m_matrix[0][1] * m_matrix[1][3]
|
|
+ mat.m_matrix[0][2] * m_matrix[2][3] + mat.m_matrix[0][3] * m_matrix[3][3]);
|
|
|
|
tmp[1][0] = (mat.m_matrix[1][0] * m_matrix[0][0] + mat.m_matrix[1][1] * m_matrix[1][0]
|
|
+ mat.m_matrix[1][2] * m_matrix[2][0] + mat.m_matrix[1][3] * m_matrix[3][0]);
|
|
tmp[1][1] = (mat.m_matrix[1][0] * m_matrix[0][1] + mat.m_matrix[1][1] * m_matrix[1][1]
|
|
+ mat.m_matrix[1][2] * m_matrix[2][1] + mat.m_matrix[1][3] * m_matrix[3][1]);
|
|
tmp[1][2] = (mat.m_matrix[1][0] * m_matrix[0][2] + mat.m_matrix[1][1] * m_matrix[1][2]
|
|
+ mat.m_matrix[1][2] * m_matrix[2][2] + mat.m_matrix[1][3] * m_matrix[3][2]);
|
|
tmp[1][3] = (mat.m_matrix[1][0] * m_matrix[0][3] + mat.m_matrix[1][1] * m_matrix[1][3]
|
|
+ mat.m_matrix[1][2] * m_matrix[2][3] + mat.m_matrix[1][3] * m_matrix[3][3]);
|
|
|
|
tmp[2][0] = (mat.m_matrix[2][0] * m_matrix[0][0] + mat.m_matrix[2][1] * m_matrix[1][0]
|
|
+ mat.m_matrix[2][2] * m_matrix[2][0] + mat.m_matrix[2][3] * m_matrix[3][0]);
|
|
tmp[2][1] = (mat.m_matrix[2][0] * m_matrix[0][1] + mat.m_matrix[2][1] * m_matrix[1][1]
|
|
+ mat.m_matrix[2][2] * m_matrix[2][1] + mat.m_matrix[2][3] * m_matrix[3][1]);
|
|
tmp[2][2] = (mat.m_matrix[2][0] * m_matrix[0][2] + mat.m_matrix[2][1] * m_matrix[1][2]
|
|
+ mat.m_matrix[2][2] * m_matrix[2][2] + mat.m_matrix[2][3] * m_matrix[3][2]);
|
|
tmp[2][3] = (mat.m_matrix[2][0] * m_matrix[0][3] + mat.m_matrix[2][1] * m_matrix[1][3]
|
|
+ mat.m_matrix[2][2] * m_matrix[2][3] + mat.m_matrix[2][3] * m_matrix[3][3]);
|
|
|
|
tmp[3][0] = (mat.m_matrix[3][0] * m_matrix[0][0] + mat.m_matrix[3][1] * m_matrix[1][0]
|
|
+ mat.m_matrix[3][2] * m_matrix[2][0] + mat.m_matrix[3][3] * m_matrix[3][0]);
|
|
tmp[3][1] = (mat.m_matrix[3][0] * m_matrix[0][1] + mat.m_matrix[3][1] * m_matrix[1][1]
|
|
+ mat.m_matrix[3][2] * m_matrix[2][1] + mat.m_matrix[3][3] * m_matrix[3][1]);
|
|
tmp[3][2] = (mat.m_matrix[3][0] * m_matrix[0][2] + mat.m_matrix[3][1] * m_matrix[1][2]
|
|
+ mat.m_matrix[3][2] * m_matrix[2][2] + mat.m_matrix[3][3] * m_matrix[3][2]);
|
|
tmp[3][3] = (mat.m_matrix[3][0] * m_matrix[0][3] + mat.m_matrix[3][1] * m_matrix[1][3]
|
|
+ mat.m_matrix[3][2] * m_matrix[2][3] + mat.m_matrix[3][3] * m_matrix[3][3]);
|
|
|
|
setMatrix(tmp);
|
|
return *this;
|
|
}
|
|
|
|
void TransformationMatrix::multVecMatrix(double x, double y, double& resultX, double& resultY) const
|
|
{
|
|
resultX = m_matrix[3][0] + x * m_matrix[0][0] + y * m_matrix[1][0];
|
|
resultY = m_matrix[3][1] + x * m_matrix[0][1] + y * m_matrix[1][1];
|
|
double w = m_matrix[3][3] + x * m_matrix[0][3] + y * m_matrix[1][3];
|
|
if (w != 1 && w != 0) {
|
|
resultX /= w;
|
|
resultY /= w;
|
|
}
|
|
}
|
|
|
|
void TransformationMatrix::multVecMatrix(double x, double y, double z, double& resultX, double& resultY, double& resultZ) const
|
|
{
|
|
resultX = m_matrix[3][0] + x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0];
|
|
resultY = m_matrix[3][1] + x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1];
|
|
resultZ = m_matrix[3][2] + x * m_matrix[0][2] + y * m_matrix[1][2] + z * m_matrix[2][2];
|
|
double w = m_matrix[3][3] + x * m_matrix[0][3] + y * m_matrix[1][3] + z * m_matrix[2][3];
|
|
if (w != 1 && w != 0) {
|
|
resultX /= w;
|
|
resultY /= w;
|
|
resultZ /= w;
|
|
}
|
|
}
|
|
|
|
bool TransformationMatrix::isInvertible() const
|
|
{
|
|
if (isIdentityOrTranslation())
|
|
return true;
|
|
|
|
double det = WebCore::determinant4x4(m_matrix);
|
|
|
|
if (fabs(det) < SMALL_NUMBER)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
TransformationMatrix TransformationMatrix::inverse() const
|
|
{
|
|
if (isIdentityOrTranslation()) {
|
|
// identity matrix
|
|
if (m_matrix[3][0] == 0 && m_matrix[3][1] == 0 && m_matrix[3][2] == 0)
|
|
return TransformationMatrix();
|
|
|
|
// translation
|
|
return TransformationMatrix(1, 0, 0, 0,
|
|
0, 1, 0, 0,
|
|
0, 0, 1, 0,
|
|
-m_matrix[3][0], -m_matrix[3][1], -m_matrix[3][2], 1);
|
|
}
|
|
|
|
TransformationMatrix invMat;
|
|
bool inverted = WebCore::inverse(m_matrix, invMat.m_matrix);
|
|
if (!inverted)
|
|
return TransformationMatrix();
|
|
|
|
return invMat;
|
|
}
|
|
|
|
void TransformationMatrix::makeAffine()
|
|
{
|
|
m_matrix[0][2] = 0;
|
|
m_matrix[0][3] = 0;
|
|
|
|
m_matrix[1][2] = 0;
|
|
m_matrix[1][3] = 0;
|
|
|
|
m_matrix[2][0] = 0;
|
|
m_matrix[2][1] = 0;
|
|
m_matrix[2][2] = 1;
|
|
m_matrix[2][3] = 0;
|
|
|
|
m_matrix[3][2] = 0;
|
|
m_matrix[3][3] = 1;
|
|
}
|
|
|
|
static inline void blendFloat(double& from, double to, double progress)
|
|
{
|
|
if (from != to)
|
|
from = from + (to - from) * progress;
|
|
}
|
|
|
|
void TransformationMatrix::blend(const TransformationMatrix& from, double progress)
|
|
{
|
|
if (from.isIdentity() && isIdentity())
|
|
return;
|
|
|
|
// decompose
|
|
DecomposedType fromDecomp;
|
|
DecomposedType toDecomp;
|
|
from.decompose(fromDecomp);
|
|
decompose(toDecomp);
|
|
|
|
// interpolate
|
|
blendFloat(fromDecomp.scaleX, toDecomp.scaleX, progress);
|
|
blendFloat(fromDecomp.scaleY, toDecomp.scaleY, progress);
|
|
blendFloat(fromDecomp.scaleZ, toDecomp.scaleZ, progress);
|
|
blendFloat(fromDecomp.skewXY, toDecomp.skewXY, progress);
|
|
blendFloat(fromDecomp.skewXZ, toDecomp.skewXZ, progress);
|
|
blendFloat(fromDecomp.skewYZ, toDecomp.skewYZ, progress);
|
|
blendFloat(fromDecomp.translateX, toDecomp.translateX, progress);
|
|
blendFloat(fromDecomp.translateY, toDecomp.translateY, progress);
|
|
blendFloat(fromDecomp.translateZ, toDecomp.translateZ, progress);
|
|
blendFloat(fromDecomp.perspectiveX, toDecomp.perspectiveX, progress);
|
|
blendFloat(fromDecomp.perspectiveY, toDecomp.perspectiveY, progress);
|
|
blendFloat(fromDecomp.perspectiveZ, toDecomp.perspectiveZ, progress);
|
|
blendFloat(fromDecomp.perspectiveW, toDecomp.perspectiveW, progress);
|
|
|
|
slerp(&fromDecomp.quaternionX, &toDecomp.quaternionX, progress);
|
|
|
|
// recompose
|
|
recompose(fromDecomp);
|
|
}
|
|
|
|
bool TransformationMatrix::decompose(DecomposedType& decomp) const
|
|
{
|
|
if (isIdentity()) {
|
|
memset(&decomp, 0, sizeof(decomp));
|
|
decomp.perspectiveW = 1;
|
|
decomp.scaleX = 1;
|
|
decomp.scaleY = 1;
|
|
decomp.scaleZ = 1;
|
|
}
|
|
|
|
if (!WebCore::decompose(m_matrix, decomp))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void TransformationMatrix::recompose(const DecomposedType& decomp, bool useEulerAngle)
|
|
{
|
|
makeIdentity();
|
|
|
|
// first apply perspective
|
|
m_matrix[0][3] = decomp.perspectiveX;
|
|
m_matrix[1][3] = decomp.perspectiveY;
|
|
m_matrix[2][3] = decomp.perspectiveZ;
|
|
m_matrix[3][3] = decomp.perspectiveW;
|
|
|
|
// now translate
|
|
translate3d(decomp.translateX, decomp.translateY, decomp.translateZ);
|
|
|
|
if (!useEulerAngle) {
|
|
// apply rotation
|
|
double xx = decomp.quaternionX * decomp.quaternionX;
|
|
double xy = decomp.quaternionX * decomp.quaternionY;
|
|
double xz = decomp.quaternionX * decomp.quaternionZ;
|
|
double xw = decomp.quaternionX * decomp.quaternionW;
|
|
double yy = decomp.quaternionY * decomp.quaternionY;
|
|
double yz = decomp.quaternionY * decomp.quaternionZ;
|
|
double yw = decomp.quaternionY * decomp.quaternionW;
|
|
double zz = decomp.quaternionZ * decomp.quaternionZ;
|
|
double zw = decomp.quaternionZ * decomp.quaternionW;
|
|
|
|
// Construct a composite rotation matrix from the quaternion values
|
|
TransformationMatrix rotationMatrix(1 - 2 * (yy + zz), 2 * (xy - zw), 2 * (xz + yw), 0,
|
|
2 * (xy + zw), 1 - 2 * (xx + zz), 2 * (yz - xw), 0,
|
|
2 * (xz - yw), 2 * (yz + xw), 1 - 2 * (xx + yy), 0,
|
|
0, 0, 0, 1);
|
|
|
|
multiply(rotationMatrix);
|
|
} else {
|
|
rotate3d(1.0, 0.0, 0.0, rad2deg(decomp.rotateX));
|
|
rotate3d(0.0, 1.0, 0.0, rad2deg(decomp.rotateY));
|
|
rotate3d(0.0, 0.0, 1.0, rad2deg(decomp.rotateZ));
|
|
}
|
|
|
|
// now apply skew
|
|
if (decomp.skewYZ) {
|
|
TransformationMatrix tmp;
|
|
tmp.setM32(decomp.skewYZ);
|
|
multiply(tmp);
|
|
}
|
|
|
|
if (decomp.skewXZ) {
|
|
TransformationMatrix tmp;
|
|
tmp.setM31(decomp.skewXZ);
|
|
multiply(tmp);
|
|
}
|
|
|
|
if (decomp.skewXY) {
|
|
TransformationMatrix tmp;
|
|
tmp.setM21(decomp.skewXY);
|
|
multiply(tmp);
|
|
}
|
|
|
|
// finally, apply scale
|
|
scale3d(decomp.scaleX, decomp.scaleY, decomp.scaleZ);
|
|
}
|
|
} |