mirror of
https://github.com/Swiftgram/Telegram-iOS.git
synced 2025-06-15 21:45:19 +00:00
940 lines
33 KiB
C++
940 lines
33 KiB
C++
#import "DCT.h"
|
|
|
|
#include "DCTCommon.h"
|
|
|
|
#include <vector>
|
|
#include <Accelerate/Accelerate.h>
|
|
|
|
#define DCTSIZE 8 /* The basic DCT block is 8x8 samples */
|
|
#define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */
|
|
|
|
typedef unsigned short UDCTELEM;
|
|
typedef unsigned int UDCTELEM2;
|
|
|
|
typedef long JLONG;
|
|
|
|
#define MULTIPLIER short /* prefer 16-bit with SIMD for parellelism */
|
|
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
|
|
|
|
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
|
|
|
|
#define CENTERJSAMPLE 128
|
|
|
|
namespace {
|
|
|
|
int flss(uint16_t val) {
|
|
int bit;
|
|
|
|
bit = 16;
|
|
|
|
if (!val)
|
|
return 0;
|
|
|
|
if (!(val & 0xff00)) {
|
|
bit -= 8;
|
|
val <<= 8;
|
|
}
|
|
if (!(val & 0xf000)) {
|
|
bit -= 4;
|
|
val <<= 4;
|
|
}
|
|
if (!(val & 0xc000)) {
|
|
bit -= 2;
|
|
val <<= 2;
|
|
}
|
|
if (!(val & 0x8000)) {
|
|
bit -= 1;
|
|
val <<= 1;
|
|
}
|
|
|
|
return bit;
|
|
}
|
|
|
|
int compute_reciprocal(uint16_t divisor, DCTELEM *dtbl) {
|
|
UDCTELEM2 fq, fr;
|
|
UDCTELEM c;
|
|
int b, r;
|
|
|
|
if (divisor == 1) {
|
|
/* divisor == 1 means unquantized, so these reciprocal/correction/shift
|
|
* values will cause the C quantization algorithm to act like the
|
|
* identity function. Since only the C quantization algorithm is used in
|
|
* these cases, the scale value is irrelevant.
|
|
*/
|
|
dtbl[DCTSIZE2 * 0] = (DCTELEM)1; /* reciprocal */
|
|
dtbl[DCTSIZE2 * 1] = (DCTELEM)0; /* correction */
|
|
dtbl[DCTSIZE2 * 2] = (DCTELEM)1; /* scale */
|
|
dtbl[DCTSIZE2 * 3] = -(DCTELEM)(sizeof(DCTELEM) * 8); /* shift */
|
|
return 0;
|
|
}
|
|
|
|
b = flss(divisor) - 1;
|
|
r = sizeof(DCTELEM) * 8 + b;
|
|
|
|
fq = ((UDCTELEM2)1 << r) / divisor;
|
|
fr = ((UDCTELEM2)1 << r) % divisor;
|
|
|
|
c = divisor / 2; /* for rounding */
|
|
|
|
if (fr == 0) { /* divisor is power of two */
|
|
/* fq will be one bit too large to fit in DCTELEM, so adjust */
|
|
fq >>= 1;
|
|
r--;
|
|
} else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */
|
|
c++;
|
|
} else { /* fractional part is > 0.5 */
|
|
fq++;
|
|
}
|
|
|
|
dtbl[DCTSIZE2 * 0] = (DCTELEM)fq; /* reciprocal */
|
|
dtbl[DCTSIZE2 * 1] = (DCTELEM)c; /* correction + roundfactor */
|
|
#ifdef WITH_SIMD
|
|
dtbl[DCTSIZE2 * 2] = (DCTELEM)(1 << (sizeof(DCTELEM) * 8 * 2 - r)); /* scale */
|
|
#else
|
|
dtbl[DCTSIZE2 * 2] = 1;
|
|
#endif
|
|
dtbl[DCTSIZE2 * 3] = (DCTELEM)r - sizeof(DCTELEM) * 8; /* shift */
|
|
|
|
if (r <= 16) return 0;
|
|
else return 1;
|
|
}
|
|
|
|
#define DESCALE(x, n) RIGHT_SHIFT(x, n)
|
|
|
|
|
|
/* Multiply a DCTELEM variable by an JLONG constant, and immediately
|
|
* descale to yield a DCTELEM result.
|
|
*/
|
|
|
|
#define MULTIPLY(var, const) ((DCTELEM)DESCALE((var) * (const), CONST_BITS))
|
|
#define MULTIPLY16V16(var1, var2) ((var1) * (var2))
|
|
|
|
static DCTELEM std_luminance_quant_tbl[DCTSIZE2] = {
|
|
16, 11, 10, 16, 24, 40, 51, 61,
|
|
12, 12, 14, 19, 26, 58, 60, 55,
|
|
14, 13, 16, 24, 40, 57, 69, 56,
|
|
14, 17, 22, 29, 51, 87, 80, 62,
|
|
18, 22, 37, 56, 68, 109, 103, 77,
|
|
24, 35, 55, 64, 81, 104, 113, 92,
|
|
49, 64, 78, 87, 103, 121, 120, 101,
|
|
72, 92, 95, 98, 112, 100, 103, 99
|
|
};
|
|
static DCTELEM std_chrominance_quant_tbl[DCTSIZE2] = {
|
|
17, 18, 24, 47, 99, 99, 99, 99,
|
|
18, 21, 26, 66, 99, 99, 99, 99,
|
|
24, 26, 56, 99, 99, 99, 99, 99,
|
|
47, 66, 99, 99, 99, 99, 99, 99,
|
|
99, 99, 99, 99, 99, 99, 99, 99,
|
|
99, 99, 99, 99, 99, 99, 99, 99,
|
|
99, 99, 99, 99, 99, 99, 99, 99,
|
|
99, 99, 99, 99, 99, 99, 99, 99
|
|
};
|
|
static DCTELEM std_delta_quant_tbl[DCTSIZE2] = {
|
|
16, 16, 16, 16, 16, 16, 16, 16,
|
|
16, 16, 16, 16, 16, 16, 16, 16,
|
|
16, 16, 16, 16, 16, 16, 16, 16,
|
|
16, 16, 16, 16, 16, 16, 16, 16,
|
|
16, 16, 16, 16, 16, 16, 16, 16,
|
|
16, 16, 16, 16, 16, 16, 16, 16,
|
|
16, 16, 16, 16, 16, 16, 16, 16,
|
|
16, 16, 16, 16, 16, 16, 16, 16
|
|
};
|
|
|
|
int jpeg_quality_scaling(int quality)
|
|
/* Convert a user-specified quality rating to a percentage scaling factor
|
|
* for an underlying quantization table, using our recommended scaling curve.
|
|
* The input 'quality' factor should be 0 (terrible) to 100 (very good).
|
|
*/
|
|
{
|
|
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
|
|
if (quality <= 0) quality = 1;
|
|
if (quality > 100) quality = 100;
|
|
|
|
/* The basic table is used as-is (scaling 100) for a quality of 50.
|
|
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
|
|
* note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
|
|
* to make all the table entries 1 (hence, minimum quantization loss).
|
|
* Qualities 1..50 are converted to scaling percentage 5000/Q.
|
|
*/
|
|
if (quality < 50)
|
|
quality = 5000 / quality;
|
|
else
|
|
quality = 200 - quality * 2;
|
|
|
|
return quality;
|
|
}
|
|
|
|
void jpeg_add_quant_table(DCTELEM *qtable, DCTELEM const *basicTable, int scale_factor, bool forceBaseline)
|
|
/* Define a quantization table equal to the basic_table times
|
|
* a scale factor (given as a percentage).
|
|
* If force_baseline is TRUE, the computed quantization table entries
|
|
* are limited to 1..255 for JPEG baseline compatibility.
|
|
*/
|
|
{
|
|
int i;
|
|
long temp;
|
|
|
|
for (i = 0; i < DCTSIZE2; i++) {
|
|
temp = ((long)basicTable[i] * scale_factor + 50L) / 100L;
|
|
/* limit the values to the valid range */
|
|
if (temp <= 0L) temp = 1L;
|
|
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
|
|
if (forceBaseline && temp > 255L)
|
|
temp = 255L; /* limit to baseline range if requested */
|
|
qtable[i] = (uint16_t)temp;
|
|
}
|
|
}
|
|
|
|
void jpeg_set_quality(DCTELEM *qtable, DCTELEM const *basicTable, int quality)
|
|
/* Set or change the 'quality' (quantization) setting, using default tables.
|
|
* This is the standard quality-adjusting entry point for typical user
|
|
* interfaces; only those who want detailed control over quantization tables
|
|
* would use the preceding three routines directly.
|
|
*/
|
|
{
|
|
/* Convert user 0-100 rating to percentage scaling */
|
|
quality = jpeg_quality_scaling(quality);
|
|
|
|
/* Set up standard quality tables */
|
|
jpeg_add_quant_table(qtable, basicTable, quality, false);
|
|
}
|
|
|
|
void getDivisors(DCTELEM *dtbl, DCTELEM const *qtable) {
|
|
#define CONST_BITS 14
|
|
#define RIGHT_SHIFT(x, shft) ((x) >> (shft))
|
|
|
|
static const int16_t aanscales[DCTSIZE2] = {
|
|
/* precomputed values scaled up by 14 bits */
|
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
|
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
|
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
|
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
|
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
|
};
|
|
|
|
for (int i = 0; i < DCTSIZE2; i++) {
|
|
if (!compute_reciprocal(
|
|
DESCALE(MULTIPLY16V16((JLONG)qtable[i],
|
|
(JLONG)aanscales[i]),
|
|
CONST_BITS - 3), &dtbl[i])) {
|
|
}
|
|
}
|
|
}
|
|
|
|
void quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace)
|
|
{
|
|
int i;
|
|
DCTELEM temp;
|
|
JCOEFPTR output_ptr = coef_block;
|
|
|
|
UDCTELEM recip, corr;
|
|
int shift;
|
|
UDCTELEM2 product;
|
|
|
|
for (i = 0; i < DCTSIZE2; i++) {
|
|
temp = workspace[i];
|
|
recip = divisors[i + DCTSIZE2 * 0];
|
|
corr = divisors[i + DCTSIZE2 * 1];
|
|
shift = divisors[i + DCTSIZE2 * 3];
|
|
|
|
if (temp < 0) {
|
|
temp = -temp;
|
|
product = (UDCTELEM2)(temp + corr) * recip;
|
|
product >>= shift + sizeof(DCTELEM) * 8;
|
|
temp = (DCTELEM)product;
|
|
temp = -temp;
|
|
} else {
|
|
product = (UDCTELEM2)(temp + corr) * recip;
|
|
product >>= shift + sizeof(DCTELEM) * 8;
|
|
temp = (DCTELEM)product;
|
|
}
|
|
output_ptr[i] = (JCOEF)temp;
|
|
}
|
|
}
|
|
|
|
void generateForwardDctData(DCTELEM const *qtable, std::vector<uint8_t> &data) {
|
|
data.resize(DCTSIZE2 * 4 * sizeof(DCTELEM));
|
|
getDivisors((DCTELEM *)data.data(), qtable);
|
|
}
|
|
|
|
void generateInverseDctData(DCTELEM const *qtable, std::vector<uint8_t> &data) {
|
|
data.resize(DCTSIZE2 * sizeof(IFAST_MULT_TYPE));
|
|
IFAST_MULT_TYPE *ifmtbl = (IFAST_MULT_TYPE *)data.data();
|
|
|
|
#define CONST_BITS 14
|
|
static const int16_t aanscales[DCTSIZE2] = {
|
|
/* precomputed values scaled up by 14 bits */
|
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
|
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
|
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
|
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
|
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
|
};
|
|
|
|
for (int i = 0; i < DCTSIZE2; i++) {
|
|
ifmtbl[i] = (IFAST_MULT_TYPE)
|
|
DESCALE(MULTIPLY16V16((JLONG)qtable[i],
|
|
(JLONG)aanscales[i]),
|
|
CONST_BITS - IFAST_SCALE_BITS);
|
|
}
|
|
}
|
|
|
|
static const int zigZagInv[DCTSIZE2] = {
|
|
0,1,8,16,9,2,3,10,
|
|
17,24,32,25,18,11,4,5,
|
|
12,19,26,33,40,48,41,34,
|
|
27,20,13,6,7,14,21,28,
|
|
35,42,49,56,57,50,43,36,
|
|
29,22,15,23,30,37,44,51,
|
|
58,59,52,45,38,31,39,46,
|
|
53,60,61,54,47,55,62,63
|
|
};
|
|
|
|
static const int zigZag4x4Inv[4 * 4] = {
|
|
0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
|
|
};
|
|
|
|
void performForwardDct(uint8_t const *pixels, int16_t *coefficients, int width, int height, int bytesPerRow, DCTELEM *divisors) {
|
|
DCTELEM block[DCTSIZE2];
|
|
JCOEF coefBlock[DCTSIZE2];
|
|
|
|
int acOffset = (width / DCTSIZE) * (height / DCTSIZE);
|
|
|
|
for (int y = 0; y < height; y += DCTSIZE) {
|
|
for (int x = 0; x < width; x += DCTSIZE) {
|
|
for (int blockY = 0; blockY < DCTSIZE; blockY++) {
|
|
for (int blockX = 0; blockX < DCTSIZE; blockX++) {
|
|
block[blockY * DCTSIZE + blockX] = ((DCTELEM)pixels[(y + blockY) * bytesPerRow + (x + blockX)]) - CENTERJSAMPLE;
|
|
}
|
|
}
|
|
|
|
dct_jpeg_fdct_ifast(block);
|
|
|
|
quantize(coefBlock, divisors, block);
|
|
|
|
coefficients[(y / DCTSIZE) * (width / DCTSIZE) + x / DCTSIZE] = coefBlock[0];
|
|
|
|
for (int blockY = 0; blockY < DCTSIZE; blockY++) {
|
|
for (int blockX = 0; blockX < DCTSIZE; blockX++) {
|
|
if (blockX == 0 && blockY == 0) {
|
|
continue;
|
|
}
|
|
int16_t element = coefBlock[zigZagInv[blockY * DCTSIZE + blockX]];
|
|
//coefficients[(y + blockY) * bytesPerRow + (x + blockX)] = element;
|
|
coefficients[acOffset] = element;
|
|
acOffset++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void performInverseDct(int16_t const * coefficients, uint8_t *pixels, int width, int height, int coefficientsPerRow, int bytesPerRow, DctAuxiliaryData *auxiliaryData, IFAST_MULT_TYPE *ifmtbl) {
|
|
DCTELEM coefficientBlock[DCTSIZE2];
|
|
JSAMPLE pixelBlock[DCTSIZE2];
|
|
|
|
int acOffset = (width / DCTSIZE) * (height / DCTSIZE);
|
|
|
|
for (int y = 0; y < height; y += DCTSIZE) {
|
|
for (int x = 0; x < width; x += DCTSIZE) {
|
|
coefficientBlock[0] = coefficients[(y / DCTSIZE) * (width / DCTSIZE) + x / DCTSIZE];
|
|
|
|
for (int blockY = 0; blockY < DCTSIZE; blockY++) {
|
|
for (int blockX = 0; blockX < DCTSIZE; blockX++) {
|
|
if (blockX == 0 && blockY == 0) {
|
|
continue;
|
|
}
|
|
int16_t element = coefficients[acOffset];
|
|
acOffset++;
|
|
coefficientBlock[zigZagInv[blockY * DCTSIZE + blockX]] = element;
|
|
//coefficientBlock[zigZagInv[blockY * DCTSIZE + blockX]] = coefficients[(y + blockY) * coefficientsPerRow + (x + blockX)];
|
|
}
|
|
}
|
|
|
|
dct_jpeg_idct_ifast(auxiliaryData, ifmtbl, coefficientBlock, pixelBlock);
|
|
|
|
for (int blockY = 0; blockY < DCTSIZE; blockY++) {
|
|
for (int blockX = 0; blockX < DCTSIZE; blockX++) {
|
|
pixels[(y + blockY) * bytesPerRow + (x + blockX)] = pixelBlock[blockY * DCTSIZE + blockX];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void matrix_multiply_4x4_neon(float32_t *A, float32_t *B, float32_t *C) {
|
|
// these are the columns A
|
|
float32x4_t A0;
|
|
float32x4_t A1;
|
|
float32x4_t A2;
|
|
float32x4_t A3;
|
|
|
|
// these are the columns B
|
|
float32x4_t B0;
|
|
float32x4_t B1;
|
|
float32x4_t B2;
|
|
float32x4_t B3;
|
|
|
|
// these are the columns C
|
|
float32x4_t C0;
|
|
float32x4_t C1;
|
|
float32x4_t C2;
|
|
float32x4_t C3;
|
|
|
|
A0 = vld1q_f32(A);
|
|
A1 = vld1q_f32(A+4);
|
|
A2 = vld1q_f32(A+8);
|
|
A3 = vld1q_f32(A+12);
|
|
|
|
// Zero accumulators for C values
|
|
C0 = vmovq_n_f32(0);
|
|
C1 = vmovq_n_f32(0);
|
|
C2 = vmovq_n_f32(0);
|
|
C3 = vmovq_n_f32(0);
|
|
|
|
// Multiply accumulate in 4x1 blocks, i.e. each column in C
|
|
B0 = vld1q_f32(B);
|
|
C0 = vfmaq_laneq_f32(C0, A0, B0, 0);
|
|
C0 = vfmaq_laneq_f32(C0, A1, B0, 1);
|
|
C0 = vfmaq_laneq_f32(C0, A2, B0, 2);
|
|
C0 = vfmaq_laneq_f32(C0, A3, B0, 3);
|
|
vst1q_f32(C, C0);
|
|
|
|
B1 = vld1q_f32(B+4);
|
|
C1 = vfmaq_laneq_f32(C1, A0, B1, 0);
|
|
C1 = vfmaq_laneq_f32(C1, A1, B1, 1);
|
|
C1 = vfmaq_laneq_f32(C1, A2, B1, 2);
|
|
C1 = vfmaq_laneq_f32(C1, A3, B1, 3);
|
|
vst1q_f32(C+4, C1);
|
|
|
|
B2 = vld1q_f32(B+8);
|
|
C2 = vfmaq_laneq_f32(C2, A0, B2, 0);
|
|
C2 = vfmaq_laneq_f32(C2, A1, B2, 1);
|
|
C2 = vfmaq_laneq_f32(C2, A2, B2, 2);
|
|
C2 = vfmaq_laneq_f32(C2, A3, B2, 3);
|
|
vst1q_f32(C+8, C2);
|
|
|
|
B3 = vld1q_f32(B+12);
|
|
C3 = vfmaq_laneq_f32(C3, A0, B3, 0);
|
|
C3 = vfmaq_laneq_f32(C3, A1, B3, 1);
|
|
C3 = vfmaq_laneq_f32(C3, A2, B3, 2);
|
|
C3 = vfmaq_laneq_f32(C3, A3, B3, 3);
|
|
vst1q_f32(C+12, C3);
|
|
}
|
|
|
|
typedef int16_t tran_low_t;
|
|
typedef int32_t tran_high_t;
|
|
typedef int16_t tran_coef_t;
|
|
|
|
static const tran_coef_t cospi_1_64 = 16364;
|
|
static const tran_coef_t cospi_2_64 = 16305;
|
|
static const tran_coef_t cospi_3_64 = 16207;
|
|
static const tran_coef_t cospi_4_64 = 16069;
|
|
static const tran_coef_t cospi_5_64 = 15893;
|
|
static const tran_coef_t cospi_6_64 = 15679;
|
|
static const tran_coef_t cospi_7_64 = 15426;
|
|
static const tran_coef_t cospi_8_64 = 15137;
|
|
static const tran_coef_t cospi_9_64 = 14811;
|
|
static const tran_coef_t cospi_10_64 = 14449;
|
|
static const tran_coef_t cospi_11_64 = 14053;
|
|
static const tran_coef_t cospi_12_64 = 13623;
|
|
static const tran_coef_t cospi_13_64 = 13160;
|
|
static const tran_coef_t cospi_14_64 = 12665;
|
|
static const tran_coef_t cospi_15_64 = 12140;
|
|
static const tran_coef_t cospi_16_64 = 11585;
|
|
static const tran_coef_t cospi_17_64 = 11003;
|
|
static const tran_coef_t cospi_18_64 = 10394;
|
|
static const tran_coef_t cospi_19_64 = 9760;
|
|
static const tran_coef_t cospi_20_64 = 9102;
|
|
static const tran_coef_t cospi_21_64 = 8423;
|
|
static const tran_coef_t cospi_22_64 = 7723;
|
|
static const tran_coef_t cospi_23_64 = 7005;
|
|
static const tran_coef_t cospi_24_64 = 6270;
|
|
static const tran_coef_t cospi_25_64 = 5520;
|
|
static const tran_coef_t cospi_26_64 = 4756;
|
|
static const tran_coef_t cospi_27_64 = 3981;
|
|
static const tran_coef_t cospi_28_64 = 3196;
|
|
static const tran_coef_t cospi_29_64 = 2404;
|
|
static const tran_coef_t cospi_30_64 = 1606;
|
|
static const tran_coef_t cospi_31_64 = 804;
|
|
|
|
// 16384 * sqrt(2) * sin(kPi/9) * 2 / 3
|
|
static const tran_coef_t sinpi_1_9 = 5283;
|
|
static const tran_coef_t sinpi_2_9 = 9929;
|
|
static const tran_coef_t sinpi_3_9 = 13377;
|
|
static const tran_coef_t sinpi_4_9 = 15212;
|
|
|
|
#define DCT_CONST_BITS 14
|
|
#define DCT_CONST_ROUNDING (1 << (DCT_CONST_BITS - 1))
|
|
|
|
#define ROUND_POWER_OF_TWO(value, n) (((value) + (1 << ((n)-1))) >> (n))
|
|
|
|
static inline tran_high_t fdct_round_shift(tran_high_t input) {
|
|
tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
|
|
// TODO(debargha, peter.derivaz): Find new bounds for this assert
|
|
// and make the bounds consts.
|
|
// assert(INT16_MIN <= rv && rv <= INT16_MAX);
|
|
return rv;
|
|
}
|
|
|
|
void fdct4x4_float(const int16_t *input, tran_low_t *output) {
|
|
float inputFloat[4 * 4];
|
|
for (int i = 0; i < 4 * 4; i++) {
|
|
inputFloat[i] = (float)input[i];
|
|
}
|
|
float outputFloat[4 * 4];
|
|
|
|
int i, j, u, v;
|
|
for (u = 0; u < 4; ++u) {
|
|
for (v = 0; v < 4; ++v) {
|
|
outputFloat[u * 4 + v] = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
for (j = 0; j < 4; j++) {
|
|
outputFloat[u * 4 + v] += inputFloat[i * 4 + j] * cos(M_PI/((float)4)*(i+1./2.)*u)*cos(M_PI/((float)4)*(j+1./2.)*v);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < 4 * 4; i++) {
|
|
output[i] = (float)outputFloat[i];
|
|
}
|
|
}
|
|
|
|
void vpx_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) {
|
|
// The 2D transform is done with two passes which are actually pretty
|
|
// similar. In the first one, we transform the columns and transpose
|
|
// the results. In the second one, we transform the rows. To achieve that,
|
|
// as the first pass results are transposed, we transpose the columns (that
|
|
// is the transposed rows) and transpose the results (so that it goes back
|
|
// in normal/row positions).
|
|
int pass;
|
|
// We need an intermediate buffer between passes.
|
|
tran_low_t intermediate[4 * 4];
|
|
const tran_low_t *in_low = NULL;
|
|
tran_low_t *out = intermediate;
|
|
// Do the two transform/transpose passes
|
|
for (pass = 0; pass < 2; ++pass) {
|
|
tran_high_t in_high[4]; // canbe16
|
|
tran_high_t step[4]; // canbe16
|
|
tran_high_t temp1, temp2; // needs32
|
|
int i;
|
|
for (i = 0; i < 4; ++i) {
|
|
// Load inputs.
|
|
if (pass == 0) {
|
|
in_high[0] = input[0 * stride] * 16;
|
|
in_high[1] = input[1 * stride] * 16;
|
|
in_high[2] = input[2 * stride] * 16;
|
|
in_high[3] = input[3 * stride] * 16;
|
|
if (i == 0 && in_high[0]) {
|
|
++in_high[0];
|
|
}
|
|
} else {
|
|
assert(in_low != NULL);
|
|
in_high[0] = in_low[0 * 4];
|
|
in_high[1] = in_low[1 * 4];
|
|
in_high[2] = in_low[2 * 4];
|
|
in_high[3] = in_low[3 * 4];
|
|
++in_low;
|
|
}
|
|
// Transform.
|
|
step[0] = in_high[0] + in_high[3];
|
|
step[1] = in_high[1] + in_high[2];
|
|
step[2] = in_high[1] - in_high[2];
|
|
step[3] = in_high[0] - in_high[3];
|
|
temp1 = (step[0] + step[1]) * cospi_16_64;
|
|
temp2 = (step[0] - step[1]) * cospi_16_64;
|
|
out[0] = (tran_low_t)fdct_round_shift(temp1);
|
|
out[2] = (tran_low_t)fdct_round_shift(temp2);
|
|
temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
|
|
temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
|
|
out[1] = (tran_low_t)fdct_round_shift(temp1);
|
|
out[3] = (tran_low_t)fdct_round_shift(temp2);
|
|
// Do next column (which is a transposed row in second/horizontal pass)
|
|
++input;
|
|
out += 4;
|
|
}
|
|
// Setup in/out for next pass.
|
|
in_low = intermediate;
|
|
out = output;
|
|
}
|
|
|
|
{
|
|
int i, j;
|
|
for (i = 0; i < 4; ++i) {
|
|
for (j = 0; j < 4; ++j) output[j + i * 4] = (output[j + i * 4] + 1) >> 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define ROUND_POWER_OF_TWO(value, n) (((value) + (1 << ((n)-1))) >> (n))
|
|
|
|
static inline tran_high_t dct_const_round_shift(tran_high_t input) {
|
|
tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
|
|
return (tran_high_t)rv;
|
|
}
|
|
|
|
static inline tran_high_t check_range(tran_high_t input) {
|
|
#ifdef CONFIG_COEFFICIENT_RANGE_CHECKING
|
|
// For valid VP9 input streams, intermediate stage coefficients should always
|
|
// stay within the range of a signed 16 bit integer. Coefficients can go out
|
|
// of this range for invalid/corrupt VP9 streams. However, strictly checking
|
|
// this range for every intermediate coefficient can burdensome for a decoder,
|
|
// therefore the following assertion is only enabled when configured with
|
|
// --enable-coefficient-range-checking.
|
|
assert(INT16_MIN <= input);
|
|
assert(input <= INT16_MAX);
|
|
#endif // CONFIG_COEFFICIENT_RANGE_CHECKING
|
|
return input;
|
|
}
|
|
|
|
#define WRAPLOW(x) ((int32_t)check_range(x))
|
|
|
|
void idct4_c(const tran_low_t *input, tran_low_t *output) {
|
|
int16_t step[4];
|
|
tran_high_t temp1, temp2;
|
|
|
|
// stage 1
|
|
temp1 = ((int16_t)input[0] + (int16_t)input[2]) * cospi_16_64;
|
|
temp2 = ((int16_t)input[0] - (int16_t)input[2]) * cospi_16_64;
|
|
step[0] = WRAPLOW(dct_const_round_shift(temp1));
|
|
step[1] = WRAPLOW(dct_const_round_shift(temp2));
|
|
temp1 = (int16_t)input[1] * cospi_24_64 - (int16_t)input[3] * cospi_8_64;
|
|
temp2 = (int16_t)input[1] * cospi_8_64 + (int16_t)input[3] * cospi_24_64;
|
|
step[2] = WRAPLOW(dct_const_round_shift(temp1));
|
|
step[3] = WRAPLOW(dct_const_round_shift(temp2));
|
|
|
|
// stage 2
|
|
output[0] = WRAPLOW(step[0] + step[3]);
|
|
output[1] = WRAPLOW(step[1] + step[2]);
|
|
output[2] = WRAPLOW(step[1] - step[2]);
|
|
output[3] = WRAPLOW(step[0] - step[3]);
|
|
}
|
|
|
|
void vpx_idct4x4_16_add_c(const tran_low_t *input, tran_low_t *dest, int stride) {
|
|
int i, j;
|
|
tran_low_t out[4 * 4];
|
|
tran_low_t *outptr = out;
|
|
tran_low_t temp_in[4], temp_out[4];
|
|
|
|
// Rows
|
|
for (i = 0; i < 4; ++i) {
|
|
idct4_c(input, outptr);
|
|
input += 4;
|
|
outptr += 4;
|
|
}
|
|
|
|
// Columns
|
|
for (i = 0; i < 4; ++i) {
|
|
for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i];
|
|
idct4_c(temp_in, temp_out);
|
|
for (j = 0; j < 4; ++j) {
|
|
dest[j * stride + i] = ROUND_POWER_OF_TWO(temp_out[j], 4);
|
|
//dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 4));
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline int16x8_t load_tran_low_to_s16q(const tran_low_t *buf) {
|
|
return vld1q_s16(buf);
|
|
}
|
|
|
|
static inline void transpose_s16_4x4q(int16x8_t *a0, int16x8_t *a1) {
|
|
// Swap 32 bit elements. Goes from:
|
|
// a0: 00 01 02 03 10 11 12 13
|
|
// a1: 20 21 22 23 30 31 32 33
|
|
// to:
|
|
// b0.val[0]: 00 01 20 21 10 11 30 31
|
|
// b0.val[1]: 02 03 22 23 12 13 32 33
|
|
|
|
const int32x4x2_t b0 =
|
|
vtrnq_s32(vreinterpretq_s32_s16(*a0), vreinterpretq_s32_s16(*a1));
|
|
|
|
// Swap 64 bit elements resulting in:
|
|
// c0: 00 01 20 21 02 03 22 23
|
|
// c1: 10 11 30 31 12 13 32 33
|
|
|
|
const int32x4_t c0 =
|
|
vcombine_s32(vget_low_s32(b0.val[0]), vget_low_s32(b0.val[1]));
|
|
const int32x4_t c1 =
|
|
vcombine_s32(vget_high_s32(b0.val[0]), vget_high_s32(b0.val[1]));
|
|
|
|
// Swap 16 bit elements resulting in:
|
|
// d0.val[0]: 00 10 20 30 02 12 22 32
|
|
// d0.val[1]: 01 11 21 31 03 13 23 33
|
|
|
|
const int16x8x2_t d0 =
|
|
vtrnq_s16(vreinterpretq_s16_s32(c0), vreinterpretq_s16_s32(c1));
|
|
|
|
*a0 = d0.val[0];
|
|
*a1 = d0.val[1];
|
|
}
|
|
|
|
static inline int16x8_t dct_const_round_shift_low_8(const int32x4_t *const in) {
|
|
return vcombine_s16(vrshrn_n_s32(in[0], DCT_CONST_BITS),
|
|
vrshrn_n_s32(in[1], DCT_CONST_BITS));
|
|
}
|
|
|
|
static inline void dct_const_round_shift_low_8_dual(const int32x4_t *const t32,
|
|
int16x8_t *const d0,
|
|
int16x8_t *const d1) {
|
|
*d0 = dct_const_round_shift_low_8(t32 + 0);
|
|
*d1 = dct_const_round_shift_low_8(t32 + 2);
|
|
}
|
|
|
|
static const int16_t kCospi[16] = {
|
|
16384 /* cospi_0_64 */, 15137 /* cospi_8_64 */,
|
|
11585 /* cospi_16_64 */, 6270 /* cospi_24_64 */,
|
|
16069 /* cospi_4_64 */, 13623 /* cospi_12_64 */,
|
|
-9102 /* -cospi_20_64 */, 3196 /* cospi_28_64 */,
|
|
16305 /* cospi_2_64 */, 1606 /* cospi_30_64 */,
|
|
14449 /* cospi_10_64 */, 7723 /* cospi_22_64 */,
|
|
15679 /* cospi_6_64 */, -4756 /* -cospi_26_64 */,
|
|
12665 /* cospi_14_64 */, -10394 /* -cospi_18_64 */
|
|
};
|
|
|
|
static inline void idct4x4_16_kernel_bd8(int16x8_t *const a) {
|
|
const int16x4_t cospis = vld1_s16(kCospi);
|
|
int16x4_t b[4];
|
|
int32x4_t c[4];
|
|
int16x8_t d[2];
|
|
|
|
b[0] = vget_low_s16(a[0]);
|
|
b[1] = vget_high_s16(a[0]);
|
|
b[2] = vget_low_s16(a[1]);
|
|
b[3] = vget_high_s16(a[1]);
|
|
c[0] = vmull_lane_s16(b[0], cospis, 2);
|
|
c[2] = vmull_lane_s16(b[1], cospis, 2);
|
|
c[1] = vsubq_s32(c[0], c[2]);
|
|
c[0] = vaddq_s32(c[0], c[2]);
|
|
c[3] = vmull_lane_s16(b[2], cospis, 3);
|
|
c[2] = vmull_lane_s16(b[2], cospis, 1);
|
|
c[3] = vmlsl_lane_s16(c[3], b[3], cospis, 1);
|
|
c[2] = vmlal_lane_s16(c[2], b[3], cospis, 3);
|
|
dct_const_round_shift_low_8_dual(c, &d[0], &d[1]);
|
|
a[0] = vaddq_s16(d[0], d[1]);
|
|
a[1] = vsubq_s16(d[0], d[1]);
|
|
}
|
|
|
|
static inline void transpose_idct4x4_16_bd8(int16x8_t *const a) {
|
|
transpose_s16_4x4q(&a[0], &a[1]);
|
|
idct4x4_16_kernel_bd8(a);
|
|
}
|
|
|
|
inline void vpx_idct4x4_16_add_neon(const int16x8_t &top64, const int16x8_t &bottom64, int16_t *dest, int16_t multiplier) {
|
|
int16x8_t a[2];
|
|
|
|
assert(!((intptr_t)dest % sizeof(uint32_t)));
|
|
|
|
int16x8_t mul = vdupq_n_s16(multiplier);
|
|
|
|
// Rows
|
|
a[0] = vmulq_s16(top64, mul);
|
|
a[1] = vmulq_s16(bottom64, mul);
|
|
transpose_idct4x4_16_bd8(a);
|
|
|
|
// Columns
|
|
a[1] = vcombine_s16(vget_high_s16(a[1]), vget_low_s16(a[1]));
|
|
transpose_idct4x4_16_bd8(a);
|
|
a[0] = vrshrq_n_s16(a[0], 4);
|
|
a[1] = vrshrq_n_s16(a[1], 4);
|
|
|
|
vst1q_s16(dest, a[0]);
|
|
dest += 2 * 4;
|
|
vst1_s16(dest, vget_high_s16(a[1]));
|
|
dest += 4;
|
|
vst1_s16(dest, vget_low_s16(a[1]));
|
|
}
|
|
|
|
static int dct4x4QuantDC = 58;
|
|
static int dct4x4QuantAC = 58;
|
|
|
|
void performForward4x4Dct(int16_t const *normalizedCoefficients, int16_t *coefficients, int width, int height, DCTELEM *divisors) {
|
|
DCTELEM block[4 * 4];
|
|
DCTELEM coefBlock[4 * 4];
|
|
|
|
//int acOffset = (width / 4) * (height / 4);
|
|
|
|
for (int y = 0; y < height; y += 4) {
|
|
for (int x = 0; x < width; x += 4) {
|
|
for (int blockY = 0; blockY < 4; blockY++) {
|
|
for (int blockX = 0; blockX < 4; blockX++) {
|
|
block[blockY * 4 + blockX] = normalizedCoefficients[(y + blockY) * width + (x + blockX)];
|
|
}
|
|
}
|
|
|
|
vpx_fdct4x4_c(block, coefBlock, 4);
|
|
|
|
coefBlock[0] /= dct4x4QuantDC;
|
|
|
|
for (int blockY = 0; blockY < 4; blockY++) {
|
|
for (int blockX = 0; blockX < 4; blockX++) {
|
|
if (blockX == 0 && blockY == 0) {
|
|
continue;
|
|
}
|
|
|
|
coefBlock[blockY * 4 + blockX] /= dct4x4QuantAC;
|
|
}
|
|
}
|
|
|
|
//coefficients[(y / 4) * (width / 4) + x / 4] = coefBlock[0];
|
|
|
|
for (int blockY = 0; blockY < 4; blockY++) {
|
|
for (int blockX = 0; blockX < 4; blockX++) {
|
|
/*if (blockX == 0 && blockY == 0) {
|
|
continue;
|
|
}*/
|
|
|
|
coefficients[(y + blockY) * width + (x + blockX)] = coefBlock[zigZag4x4Inv[blockY * 4 + blockX]];
|
|
//coefficients[acOffset] = coefBlock[zigZag4x4Inv[blockY * 4 + blockX]];
|
|
//acOffset++;
|
|
//coefficients[(y + blockY) * width + (x + blockX)] = coefBlock[blockY * 4 + blockX];
|
|
//int targetIndex = (blockY * 4 + blockX) * (width / 4 * height / 4) + blockIndex;
|
|
//coefficients[targetIndex] = coefBlock[zigZag4x4Inv[blockY * 4 + blockX]];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void performInverse4x4Dct(int16_t const * coefficients, int16_t *normalizedCoefficients, int width, int height, DctAuxiliaryData *auxiliaryData, IFAST_MULT_TYPE *ifmtbl) {
|
|
DCTELEM resultBlock[4 * 4];
|
|
|
|
for (int y = 0; y < height; y += 4) {
|
|
for (int x = 0; x < width; x += 4) {
|
|
uint32x2_t sa = vld1_u32((uint32_t *)&coefficients[(y + 0) * width + x]);
|
|
uint32x2_t sb = vld1_u32((uint32_t *)&coefficients[(y + 1) * width + x]);
|
|
uint32x2_t sc = vld1_u32((uint32_t *)&coefficients[(y + 2) * width + x]);
|
|
uint32x2_t sd = vld1_u32((uint32_t *)&coefficients[(y + 3) * width + x]);
|
|
|
|
uint8x16_t top = vreinterpretq_u8_u32(vcombine_u32(sa, sb));
|
|
uint8x16_t bottom = vreinterpretq_u8_u32(vcombine_u32(sc, sd));
|
|
uint8x16x2_t quad = vzipq_u8(top, bottom);
|
|
|
|
uint8_t topReorderIndices[16] = {0, 2, 4, 6, 20, 22, 24, 26, 8, 10, 16, 18, 28, 30, 17, 19};
|
|
uint8_t bottomReorderIndices[16] = {12, 14, 1, 3, 13, 15, 21, 23, 5, 7, 9, 11, 25, 27, 29, 31};
|
|
|
|
uint8x16_t qtop = vqtbl2q_u8(quad, vld1q_u8(topReorderIndices));
|
|
uint8x16_t qbottom = vqtbl2q_u8(quad, vld1q_u8(bottomReorderIndices));
|
|
|
|
uint16x8_t qtop16 = vreinterpretq_s16_u8(qtop);
|
|
uint16x8_t qbottom16 = vreinterpretq_s16_u8(qbottom);
|
|
|
|
int16x8_t top64 = vreinterpretq_s16_u16(qtop16);
|
|
int16x8_t bottom64 = vreinterpretq_s16_u16(qbottom16);
|
|
|
|
/*DCTELEM coefficientBlock[4 * 4];
|
|
|
|
for (int blockY = 0; blockY < 4; blockY++) {
|
|
for (int blockX = 0; blockX < 4; blockX++) {
|
|
coefficientBlock[zigZag4x4Inv[blockY * 4 + blockX]] = coefficients[(y + blockY) * width + (x + blockX)];
|
|
}
|
|
}
|
|
|
|
top64 = vreinterpretq_s16_u64(vld1q_u64((uint64_t *)&coefficientBlock[0]));
|
|
bottom64 = vreinterpretq_s16_u64(vld1q_u64((uint64_t *)&coefficientBlock[8]));*/
|
|
|
|
vpx_idct4x4_16_add_neon(top64, bottom64, resultBlock, dct4x4QuantAC);
|
|
|
|
uint32x2_t a = vld1_u32((uint32_t *)&resultBlock[4 * 0]);
|
|
uint32x2_t b = vld1_u32((uint32_t *)&resultBlock[4 * 1]);
|
|
uint32x2_t c = vld1_u32((uint32_t *)&resultBlock[4 * 2]);
|
|
uint32x2_t d = vld1_u32((uint32_t *)&resultBlock[4 * 3]);
|
|
|
|
vst1_u32((uint32_t *)&normalizedCoefficients[(y + 0) * width + x], a);
|
|
vst1_u32((uint32_t *)&normalizedCoefficients[(y + 1) * width + x], b);
|
|
vst1_u32((uint32_t *)&normalizedCoefficients[(y + 2) * width + x], c);
|
|
vst1_u32((uint32_t *)&normalizedCoefficients[(y + 3) * width + x], d);
|
|
|
|
/*for (int blockY = 0; blockY < 4; blockY++) {
|
|
for (int blockX = 0; blockX < 4; blockX++) {
|
|
normalizedCoefficients[(y + blockY) * width + (x + blockX)] = resultBlock[blockY * 4 + blockX];
|
|
}
|
|
}*/
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
namespace dct {
|
|
|
|
DCTTable DCTTable::generate(int quality, DCTTable::Type type) {
|
|
DCTTable result;
|
|
result.table.resize(DCTSIZE2);
|
|
|
|
switch (type) {
|
|
case DCTTable::Type::Luma:
|
|
jpeg_set_quality(result.table.data(), std_luminance_quant_tbl, quality);
|
|
break;
|
|
case DCTTable::Type::Chroma:
|
|
jpeg_set_quality(result.table.data(), std_chrominance_quant_tbl, quality);
|
|
break;
|
|
case DCTTable::Type::Delta:
|
|
jpeg_set_quality(result.table.data(), std_delta_quant_tbl, quality);
|
|
break;
|
|
default:
|
|
jpeg_set_quality(result.table.data(), std_luminance_quant_tbl, quality);
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
DCTTable DCTTable::initializeEmpty() {
|
|
DCTTable result;
|
|
result.table.resize(DCTSIZE2);
|
|
return result;
|
|
}
|
|
|
|
class DCTInternal {
|
|
public:
|
|
DCTInternal(DCTTable const &dctTable) {
|
|
auxiliaryData = createDctAuxiliaryData();
|
|
|
|
generateForwardDctData(dctTable.table.data(), forwardDctData);
|
|
generateInverseDctData(dctTable.table.data(), inverseDctData);
|
|
}
|
|
|
|
~DCTInternal() {
|
|
freeDctAuxiliaryData(auxiliaryData);
|
|
}
|
|
|
|
public:
|
|
struct DctAuxiliaryData *auxiliaryData = nullptr;
|
|
std::vector<uint8_t> forwardDctData;
|
|
std::vector<uint8_t> inverseDctData;
|
|
};
|
|
|
|
DCT::DCT(DCTTable const &dctTable) {
|
|
_internal = new DCTInternal(dctTable);
|
|
}
|
|
|
|
DCT::~DCT() {
|
|
delete _internal;
|
|
}
|
|
|
|
void DCT::forward(uint8_t const *pixels, int16_t *coefficients, int width, int height, int bytesPerRow) {
|
|
performForwardDct(pixels, coefficients, width, height, bytesPerRow, (DCTELEM *)_internal->forwardDctData.data());
|
|
}
|
|
|
|
void DCT::inverse(int16_t const *coefficients, uint8_t *pixels, int width, int height, int coefficientsPerRow, int bytesPerRow) {
|
|
performInverseDct(coefficients, pixels, width, height, coefficientsPerRow, bytesPerRow, _internal->auxiliaryData, (IFAST_MULT_TYPE *)_internal->inverseDctData.data());
|
|
}
|
|
|
|
void DCT::forward4x4(int16_t const *normalizedCoefficients, int16_t *coefficients, int width, int height) {
|
|
performForward4x4Dct(normalizedCoefficients, coefficients, width, height, (DCTELEM *)_internal->forwardDctData.data());
|
|
}
|
|
|
|
void DCT::inverse4x4(int16_t const *coefficients, int16_t *normalizedCoefficients, int width, int height) {
|
|
performInverse4x4Dct(coefficients, normalizedCoefficients, width, height, _internal->auxiliaryData, (IFAST_MULT_TYPE *)_internal->inverseDctData.data());
|
|
}
|
|
|
|
}
|