2022-07-30 23:30:14 +02:00

940 lines
33 KiB
C++

#import "DCT.h"
#include "DCTCommon.h"
#include <vector>
#include <Accelerate/Accelerate.h>
#define DCTSIZE 8 /* The basic DCT block is 8x8 samples */
#define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */
typedef unsigned short UDCTELEM;
typedef unsigned int UDCTELEM2;
typedef long JLONG;
#define MULTIPLIER short /* prefer 16-bit with SIMD for parellelism */
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
#define CENTERJSAMPLE 128
namespace {
int flss(uint16_t val) {
int bit;
bit = 16;
if (!val)
return 0;
if (!(val & 0xff00)) {
bit -= 8;
val <<= 8;
}
if (!(val & 0xf000)) {
bit -= 4;
val <<= 4;
}
if (!(val & 0xc000)) {
bit -= 2;
val <<= 2;
}
if (!(val & 0x8000)) {
bit -= 1;
val <<= 1;
}
return bit;
}
int compute_reciprocal(uint16_t divisor, DCTELEM *dtbl) {
UDCTELEM2 fq, fr;
UDCTELEM c;
int b, r;
if (divisor == 1) {
/* divisor == 1 means unquantized, so these reciprocal/correction/shift
* values will cause the C quantization algorithm to act like the
* identity function. Since only the C quantization algorithm is used in
* these cases, the scale value is irrelevant.
*/
dtbl[DCTSIZE2 * 0] = (DCTELEM)1; /* reciprocal */
dtbl[DCTSIZE2 * 1] = (DCTELEM)0; /* correction */
dtbl[DCTSIZE2 * 2] = (DCTELEM)1; /* scale */
dtbl[DCTSIZE2 * 3] = -(DCTELEM)(sizeof(DCTELEM) * 8); /* shift */
return 0;
}
b = flss(divisor) - 1;
r = sizeof(DCTELEM) * 8 + b;
fq = ((UDCTELEM2)1 << r) / divisor;
fr = ((UDCTELEM2)1 << r) % divisor;
c = divisor / 2; /* for rounding */
if (fr == 0) { /* divisor is power of two */
/* fq will be one bit too large to fit in DCTELEM, so adjust */
fq >>= 1;
r--;
} else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */
c++;
} else { /* fractional part is > 0.5 */
fq++;
}
dtbl[DCTSIZE2 * 0] = (DCTELEM)fq; /* reciprocal */
dtbl[DCTSIZE2 * 1] = (DCTELEM)c; /* correction + roundfactor */
#ifdef WITH_SIMD
dtbl[DCTSIZE2 * 2] = (DCTELEM)(1 << (sizeof(DCTELEM) * 8 * 2 - r)); /* scale */
#else
dtbl[DCTSIZE2 * 2] = 1;
#endif
dtbl[DCTSIZE2 * 3] = (DCTELEM)r - sizeof(DCTELEM) * 8; /* shift */
if (r <= 16) return 0;
else return 1;
}
#define DESCALE(x, n) RIGHT_SHIFT(x, n)
/* Multiply a DCTELEM variable by an JLONG constant, and immediately
* descale to yield a DCTELEM result.
*/
#define MULTIPLY(var, const) ((DCTELEM)DESCALE((var) * (const), CONST_BITS))
#define MULTIPLY16V16(var1, var2) ((var1) * (var2))
static DCTELEM std_luminance_quant_tbl[DCTSIZE2] = {
16, 11, 10, 16, 24, 40, 51, 61,
12, 12, 14, 19, 26, 58, 60, 55,
14, 13, 16, 24, 40, 57, 69, 56,
14, 17, 22, 29, 51, 87, 80, 62,
18, 22, 37, 56, 68, 109, 103, 77,
24, 35, 55, 64, 81, 104, 113, 92,
49, 64, 78, 87, 103, 121, 120, 101,
72, 92, 95, 98, 112, 100, 103, 99
};
static DCTELEM std_chrominance_quant_tbl[DCTSIZE2] = {
17, 18, 24, 47, 99, 99, 99, 99,
18, 21, 26, 66, 99, 99, 99, 99,
24, 26, 56, 99, 99, 99, 99, 99,
47, 66, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99
};
static DCTELEM std_delta_quant_tbl[DCTSIZE2] = {
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16
};
int jpeg_quality_scaling(int quality)
/* Convert a user-specified quality rating to a percentage scaling factor
* for an underlying quantization table, using our recommended scaling curve.
* The input 'quality' factor should be 0 (terrible) to 100 (very good).
*/
{
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
if (quality <= 0) quality = 1;
if (quality > 100) quality = 100;
/* The basic table is used as-is (scaling 100) for a quality of 50.
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
* note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
* to make all the table entries 1 (hence, minimum quantization loss).
* Qualities 1..50 are converted to scaling percentage 5000/Q.
*/
if (quality < 50)
quality = 5000 / quality;
else
quality = 200 - quality * 2;
return quality;
}
void jpeg_add_quant_table(DCTELEM *qtable, DCTELEM const *basicTable, int scale_factor, bool forceBaseline)
/* Define a quantization table equal to the basic_table times
* a scale factor (given as a percentage).
* If force_baseline is TRUE, the computed quantization table entries
* are limited to 1..255 for JPEG baseline compatibility.
*/
{
int i;
long temp;
for (i = 0; i < DCTSIZE2; i++) {
temp = ((long)basicTable[i] * scale_factor + 50L) / 100L;
/* limit the values to the valid range */
if (temp <= 0L) temp = 1L;
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
if (forceBaseline && temp > 255L)
temp = 255L; /* limit to baseline range if requested */
qtable[i] = (uint16_t)temp;
}
}
void jpeg_set_quality(DCTELEM *qtable, DCTELEM const *basicTable, int quality)
/* Set or change the 'quality' (quantization) setting, using default tables.
* This is the standard quality-adjusting entry point for typical user
* interfaces; only those who want detailed control over quantization tables
* would use the preceding three routines directly.
*/
{
/* Convert user 0-100 rating to percentage scaling */
quality = jpeg_quality_scaling(quality);
/* Set up standard quality tables */
jpeg_add_quant_table(qtable, basicTable, quality, false);
}
void getDivisors(DCTELEM *dtbl, DCTELEM const *qtable) {
#define CONST_BITS 14
#define RIGHT_SHIFT(x, shft) ((x) >> (shft))
static const int16_t aanscales[DCTSIZE2] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
for (int i = 0; i < DCTSIZE2; i++) {
if (!compute_reciprocal(
DESCALE(MULTIPLY16V16((JLONG)qtable[i],
(JLONG)aanscales[i]),
CONST_BITS - 3), &dtbl[i])) {
}
}
}
void quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace)
{
int i;
DCTELEM temp;
JCOEFPTR output_ptr = coef_block;
UDCTELEM recip, corr;
int shift;
UDCTELEM2 product;
for (i = 0; i < DCTSIZE2; i++) {
temp = workspace[i];
recip = divisors[i + DCTSIZE2 * 0];
corr = divisors[i + DCTSIZE2 * 1];
shift = divisors[i + DCTSIZE2 * 3];
if (temp < 0) {
temp = -temp;
product = (UDCTELEM2)(temp + corr) * recip;
product >>= shift + sizeof(DCTELEM) * 8;
temp = (DCTELEM)product;
temp = -temp;
} else {
product = (UDCTELEM2)(temp + corr) * recip;
product >>= shift + sizeof(DCTELEM) * 8;
temp = (DCTELEM)product;
}
output_ptr[i] = (JCOEF)temp;
}
}
void generateForwardDctData(DCTELEM const *qtable, std::vector<uint8_t> &data) {
data.resize(DCTSIZE2 * 4 * sizeof(DCTELEM));
getDivisors((DCTELEM *)data.data(), qtable);
}
void generateInverseDctData(DCTELEM const *qtable, std::vector<uint8_t> &data) {
data.resize(DCTSIZE2 * sizeof(IFAST_MULT_TYPE));
IFAST_MULT_TYPE *ifmtbl = (IFAST_MULT_TYPE *)data.data();
#define CONST_BITS 14
static const int16_t aanscales[DCTSIZE2] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
for (int i = 0; i < DCTSIZE2; i++) {
ifmtbl[i] = (IFAST_MULT_TYPE)
DESCALE(MULTIPLY16V16((JLONG)qtable[i],
(JLONG)aanscales[i]),
CONST_BITS - IFAST_SCALE_BITS);
}
}
static const int zigZagInv[DCTSIZE2] = {
0,1,8,16,9,2,3,10,
17,24,32,25,18,11,4,5,
12,19,26,33,40,48,41,34,
27,20,13,6,7,14,21,28,
35,42,49,56,57,50,43,36,
29,22,15,23,30,37,44,51,
58,59,52,45,38,31,39,46,
53,60,61,54,47,55,62,63
};
static const int zigZag4x4Inv[4 * 4] = {
0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
};
void performForwardDct(uint8_t const *pixels, int16_t *coefficients, int width, int height, int bytesPerRow, DCTELEM *divisors) {
DCTELEM block[DCTSIZE2];
JCOEF coefBlock[DCTSIZE2];
int acOffset = (width / DCTSIZE) * (height / DCTSIZE);
for (int y = 0; y < height; y += DCTSIZE) {
for (int x = 0; x < width; x += DCTSIZE) {
for (int blockY = 0; blockY < DCTSIZE; blockY++) {
for (int blockX = 0; blockX < DCTSIZE; blockX++) {
block[blockY * DCTSIZE + blockX] = ((DCTELEM)pixels[(y + blockY) * bytesPerRow + (x + blockX)]) - CENTERJSAMPLE;
}
}
dct_jpeg_fdct_ifast(block);
quantize(coefBlock, divisors, block);
coefficients[(y / DCTSIZE) * (width / DCTSIZE) + x / DCTSIZE] = coefBlock[0];
for (int blockY = 0; blockY < DCTSIZE; blockY++) {
for (int blockX = 0; blockX < DCTSIZE; blockX++) {
if (blockX == 0 && blockY == 0) {
continue;
}
int16_t element = coefBlock[zigZagInv[blockY * DCTSIZE + blockX]];
//coefficients[(y + blockY) * bytesPerRow + (x + blockX)] = element;
coefficients[acOffset] = element;
acOffset++;
}
}
}
}
}
void performInverseDct(int16_t const * coefficients, uint8_t *pixels, int width, int height, int coefficientsPerRow, int bytesPerRow, DctAuxiliaryData *auxiliaryData, IFAST_MULT_TYPE *ifmtbl) {
DCTELEM coefficientBlock[DCTSIZE2];
JSAMPLE pixelBlock[DCTSIZE2];
int acOffset = (width / DCTSIZE) * (height / DCTSIZE);
for (int y = 0; y < height; y += DCTSIZE) {
for (int x = 0; x < width; x += DCTSIZE) {
coefficientBlock[0] = coefficients[(y / DCTSIZE) * (width / DCTSIZE) + x / DCTSIZE];
for (int blockY = 0; blockY < DCTSIZE; blockY++) {
for (int blockX = 0; blockX < DCTSIZE; blockX++) {
if (blockX == 0 && blockY == 0) {
continue;
}
int16_t element = coefficients[acOffset];
acOffset++;
coefficientBlock[zigZagInv[blockY * DCTSIZE + blockX]] = element;
//coefficientBlock[zigZagInv[blockY * DCTSIZE + blockX]] = coefficients[(y + blockY) * coefficientsPerRow + (x + blockX)];
}
}
dct_jpeg_idct_ifast(auxiliaryData, ifmtbl, coefficientBlock, pixelBlock);
for (int blockY = 0; blockY < DCTSIZE; blockY++) {
for (int blockX = 0; blockX < DCTSIZE; blockX++) {
pixels[(y + blockY) * bytesPerRow + (x + blockX)] = pixelBlock[blockY * DCTSIZE + blockX];
}
}
}
}
}
void matrix_multiply_4x4_neon(float32_t *A, float32_t *B, float32_t *C) {
// these are the columns A
float32x4_t A0;
float32x4_t A1;
float32x4_t A2;
float32x4_t A3;
// these are the columns B
float32x4_t B0;
float32x4_t B1;
float32x4_t B2;
float32x4_t B3;
// these are the columns C
float32x4_t C0;
float32x4_t C1;
float32x4_t C2;
float32x4_t C3;
A0 = vld1q_f32(A);
A1 = vld1q_f32(A+4);
A2 = vld1q_f32(A+8);
A3 = vld1q_f32(A+12);
// Zero accumulators for C values
C0 = vmovq_n_f32(0);
C1 = vmovq_n_f32(0);
C2 = vmovq_n_f32(0);
C3 = vmovq_n_f32(0);
// Multiply accumulate in 4x1 blocks, i.e. each column in C
B0 = vld1q_f32(B);
C0 = vfmaq_laneq_f32(C0, A0, B0, 0);
C0 = vfmaq_laneq_f32(C0, A1, B0, 1);
C0 = vfmaq_laneq_f32(C0, A2, B0, 2);
C0 = vfmaq_laneq_f32(C0, A3, B0, 3);
vst1q_f32(C, C0);
B1 = vld1q_f32(B+4);
C1 = vfmaq_laneq_f32(C1, A0, B1, 0);
C1 = vfmaq_laneq_f32(C1, A1, B1, 1);
C1 = vfmaq_laneq_f32(C1, A2, B1, 2);
C1 = vfmaq_laneq_f32(C1, A3, B1, 3);
vst1q_f32(C+4, C1);
B2 = vld1q_f32(B+8);
C2 = vfmaq_laneq_f32(C2, A0, B2, 0);
C2 = vfmaq_laneq_f32(C2, A1, B2, 1);
C2 = vfmaq_laneq_f32(C2, A2, B2, 2);
C2 = vfmaq_laneq_f32(C2, A3, B2, 3);
vst1q_f32(C+8, C2);
B3 = vld1q_f32(B+12);
C3 = vfmaq_laneq_f32(C3, A0, B3, 0);
C3 = vfmaq_laneq_f32(C3, A1, B3, 1);
C3 = vfmaq_laneq_f32(C3, A2, B3, 2);
C3 = vfmaq_laneq_f32(C3, A3, B3, 3);
vst1q_f32(C+12, C3);
}
typedef int16_t tran_low_t;
typedef int32_t tran_high_t;
typedef int16_t tran_coef_t;
static const tran_coef_t cospi_1_64 = 16364;
static const tran_coef_t cospi_2_64 = 16305;
static const tran_coef_t cospi_3_64 = 16207;
static const tran_coef_t cospi_4_64 = 16069;
static const tran_coef_t cospi_5_64 = 15893;
static const tran_coef_t cospi_6_64 = 15679;
static const tran_coef_t cospi_7_64 = 15426;
static const tran_coef_t cospi_8_64 = 15137;
static const tran_coef_t cospi_9_64 = 14811;
static const tran_coef_t cospi_10_64 = 14449;
static const tran_coef_t cospi_11_64 = 14053;
static const tran_coef_t cospi_12_64 = 13623;
static const tran_coef_t cospi_13_64 = 13160;
static const tran_coef_t cospi_14_64 = 12665;
static const tran_coef_t cospi_15_64 = 12140;
static const tran_coef_t cospi_16_64 = 11585;
static const tran_coef_t cospi_17_64 = 11003;
static const tran_coef_t cospi_18_64 = 10394;
static const tran_coef_t cospi_19_64 = 9760;
static const tran_coef_t cospi_20_64 = 9102;
static const tran_coef_t cospi_21_64 = 8423;
static const tran_coef_t cospi_22_64 = 7723;
static const tran_coef_t cospi_23_64 = 7005;
static const tran_coef_t cospi_24_64 = 6270;
static const tran_coef_t cospi_25_64 = 5520;
static const tran_coef_t cospi_26_64 = 4756;
static const tran_coef_t cospi_27_64 = 3981;
static const tran_coef_t cospi_28_64 = 3196;
static const tran_coef_t cospi_29_64 = 2404;
static const tran_coef_t cospi_30_64 = 1606;
static const tran_coef_t cospi_31_64 = 804;
// 16384 * sqrt(2) * sin(kPi/9) * 2 / 3
static const tran_coef_t sinpi_1_9 = 5283;
static const tran_coef_t sinpi_2_9 = 9929;
static const tran_coef_t sinpi_3_9 = 13377;
static const tran_coef_t sinpi_4_9 = 15212;
#define DCT_CONST_BITS 14
#define DCT_CONST_ROUNDING (1 << (DCT_CONST_BITS - 1))
#define ROUND_POWER_OF_TWO(value, n) (((value) + (1 << ((n)-1))) >> (n))
static inline tran_high_t fdct_round_shift(tran_high_t input) {
tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
// TODO(debargha, peter.derivaz): Find new bounds for this assert
// and make the bounds consts.
// assert(INT16_MIN <= rv && rv <= INT16_MAX);
return rv;
}
void fdct4x4_float(const int16_t *input, tran_low_t *output) {
float inputFloat[4 * 4];
for (int i = 0; i < 4 * 4; i++) {
inputFloat[i] = (float)input[i];
}
float outputFloat[4 * 4];
int i, j, u, v;
for (u = 0; u < 4; ++u) {
for (v = 0; v < 4; ++v) {
outputFloat[u * 4 + v] = 0;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
outputFloat[u * 4 + v] += inputFloat[i * 4 + j] * cos(M_PI/((float)4)*(i+1./2.)*u)*cos(M_PI/((float)4)*(j+1./2.)*v);
}
}
}
}
for (int i = 0; i < 4 * 4; i++) {
output[i] = (float)outputFloat[i];
}
}
void vpx_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) {
// The 2D transform is done with two passes which are actually pretty
// similar. In the first one, we transform the columns and transpose
// the results. In the second one, we transform the rows. To achieve that,
// as the first pass results are transposed, we transpose the columns (that
// is the transposed rows) and transpose the results (so that it goes back
// in normal/row positions).
int pass;
// We need an intermediate buffer between passes.
tran_low_t intermediate[4 * 4];
const tran_low_t *in_low = NULL;
tran_low_t *out = intermediate;
// Do the two transform/transpose passes
for (pass = 0; pass < 2; ++pass) {
tran_high_t in_high[4]; // canbe16
tran_high_t step[4]; // canbe16
tran_high_t temp1, temp2; // needs32
int i;
for (i = 0; i < 4; ++i) {
// Load inputs.
if (pass == 0) {
in_high[0] = input[0 * stride] * 16;
in_high[1] = input[1 * stride] * 16;
in_high[2] = input[2 * stride] * 16;
in_high[3] = input[3 * stride] * 16;
if (i == 0 && in_high[0]) {
++in_high[0];
}
} else {
assert(in_low != NULL);
in_high[0] = in_low[0 * 4];
in_high[1] = in_low[1 * 4];
in_high[2] = in_low[2 * 4];
in_high[3] = in_low[3 * 4];
++in_low;
}
// Transform.
step[0] = in_high[0] + in_high[3];
step[1] = in_high[1] + in_high[2];
step[2] = in_high[1] - in_high[2];
step[3] = in_high[0] - in_high[3];
temp1 = (step[0] + step[1]) * cospi_16_64;
temp2 = (step[0] - step[1]) * cospi_16_64;
out[0] = (tran_low_t)fdct_round_shift(temp1);
out[2] = (tran_low_t)fdct_round_shift(temp2);
temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
out[1] = (tran_low_t)fdct_round_shift(temp1);
out[3] = (tran_low_t)fdct_round_shift(temp2);
// Do next column (which is a transposed row in second/horizontal pass)
++input;
out += 4;
}
// Setup in/out for next pass.
in_low = intermediate;
out = output;
}
{
int i, j;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) output[j + i * 4] = (output[j + i * 4] + 1) >> 2;
}
}
}
#define ROUND_POWER_OF_TWO(value, n) (((value) + (1 << ((n)-1))) >> (n))
static inline tran_high_t dct_const_round_shift(tran_high_t input) {
tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
return (tran_high_t)rv;
}
static inline tran_high_t check_range(tran_high_t input) {
#ifdef CONFIG_COEFFICIENT_RANGE_CHECKING
// For valid VP9 input streams, intermediate stage coefficients should always
// stay within the range of a signed 16 bit integer. Coefficients can go out
// of this range for invalid/corrupt VP9 streams. However, strictly checking
// this range for every intermediate coefficient can burdensome for a decoder,
// therefore the following assertion is only enabled when configured with
// --enable-coefficient-range-checking.
assert(INT16_MIN <= input);
assert(input <= INT16_MAX);
#endif // CONFIG_COEFFICIENT_RANGE_CHECKING
return input;
}
#define WRAPLOW(x) ((int32_t)check_range(x))
void idct4_c(const tran_low_t *input, tran_low_t *output) {
int16_t step[4];
tran_high_t temp1, temp2;
// stage 1
temp1 = ((int16_t)input[0] + (int16_t)input[2]) * cospi_16_64;
temp2 = ((int16_t)input[0] - (int16_t)input[2]) * cospi_16_64;
step[0] = WRAPLOW(dct_const_round_shift(temp1));
step[1] = WRAPLOW(dct_const_round_shift(temp2));
temp1 = (int16_t)input[1] * cospi_24_64 - (int16_t)input[3] * cospi_8_64;
temp2 = (int16_t)input[1] * cospi_8_64 + (int16_t)input[3] * cospi_24_64;
step[2] = WRAPLOW(dct_const_round_shift(temp1));
step[3] = WRAPLOW(dct_const_round_shift(temp2));
// stage 2
output[0] = WRAPLOW(step[0] + step[3]);
output[1] = WRAPLOW(step[1] + step[2]);
output[2] = WRAPLOW(step[1] - step[2]);
output[3] = WRAPLOW(step[0] - step[3]);
}
void vpx_idct4x4_16_add_c(const tran_low_t *input, tran_low_t *dest, int stride) {
int i, j;
tran_low_t out[4 * 4];
tran_low_t *outptr = out;
tran_low_t temp_in[4], temp_out[4];
// Rows
for (i = 0; i < 4; ++i) {
idct4_c(input, outptr);
input += 4;
outptr += 4;
}
// Columns
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i];
idct4_c(temp_in, temp_out);
for (j = 0; j < 4; ++j) {
dest[j * stride + i] = ROUND_POWER_OF_TWO(temp_out[j], 4);
//dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 4));
}
}
}
static inline int16x8_t load_tran_low_to_s16q(const tran_low_t *buf) {
return vld1q_s16(buf);
}
static inline void transpose_s16_4x4q(int16x8_t *a0, int16x8_t *a1) {
// Swap 32 bit elements. Goes from:
// a0: 00 01 02 03 10 11 12 13
// a1: 20 21 22 23 30 31 32 33
// to:
// b0.val[0]: 00 01 20 21 10 11 30 31
// b0.val[1]: 02 03 22 23 12 13 32 33
const int32x4x2_t b0 =
vtrnq_s32(vreinterpretq_s32_s16(*a0), vreinterpretq_s32_s16(*a1));
// Swap 64 bit elements resulting in:
// c0: 00 01 20 21 02 03 22 23
// c1: 10 11 30 31 12 13 32 33
const int32x4_t c0 =
vcombine_s32(vget_low_s32(b0.val[0]), vget_low_s32(b0.val[1]));
const int32x4_t c1 =
vcombine_s32(vget_high_s32(b0.val[0]), vget_high_s32(b0.val[1]));
// Swap 16 bit elements resulting in:
// d0.val[0]: 00 10 20 30 02 12 22 32
// d0.val[1]: 01 11 21 31 03 13 23 33
const int16x8x2_t d0 =
vtrnq_s16(vreinterpretq_s16_s32(c0), vreinterpretq_s16_s32(c1));
*a0 = d0.val[0];
*a1 = d0.val[1];
}
static inline int16x8_t dct_const_round_shift_low_8(const int32x4_t *const in) {
return vcombine_s16(vrshrn_n_s32(in[0], DCT_CONST_BITS),
vrshrn_n_s32(in[1], DCT_CONST_BITS));
}
static inline void dct_const_round_shift_low_8_dual(const int32x4_t *const t32,
int16x8_t *const d0,
int16x8_t *const d1) {
*d0 = dct_const_round_shift_low_8(t32 + 0);
*d1 = dct_const_round_shift_low_8(t32 + 2);
}
static const int16_t kCospi[16] = {
16384 /* cospi_0_64 */, 15137 /* cospi_8_64 */,
11585 /* cospi_16_64 */, 6270 /* cospi_24_64 */,
16069 /* cospi_4_64 */, 13623 /* cospi_12_64 */,
-9102 /* -cospi_20_64 */, 3196 /* cospi_28_64 */,
16305 /* cospi_2_64 */, 1606 /* cospi_30_64 */,
14449 /* cospi_10_64 */, 7723 /* cospi_22_64 */,
15679 /* cospi_6_64 */, -4756 /* -cospi_26_64 */,
12665 /* cospi_14_64 */, -10394 /* -cospi_18_64 */
};
static inline void idct4x4_16_kernel_bd8(int16x8_t *const a) {
const int16x4_t cospis = vld1_s16(kCospi);
int16x4_t b[4];
int32x4_t c[4];
int16x8_t d[2];
b[0] = vget_low_s16(a[0]);
b[1] = vget_high_s16(a[0]);
b[2] = vget_low_s16(a[1]);
b[3] = vget_high_s16(a[1]);
c[0] = vmull_lane_s16(b[0], cospis, 2);
c[2] = vmull_lane_s16(b[1], cospis, 2);
c[1] = vsubq_s32(c[0], c[2]);
c[0] = vaddq_s32(c[0], c[2]);
c[3] = vmull_lane_s16(b[2], cospis, 3);
c[2] = vmull_lane_s16(b[2], cospis, 1);
c[3] = vmlsl_lane_s16(c[3], b[3], cospis, 1);
c[2] = vmlal_lane_s16(c[2], b[3], cospis, 3);
dct_const_round_shift_low_8_dual(c, &d[0], &d[1]);
a[0] = vaddq_s16(d[0], d[1]);
a[1] = vsubq_s16(d[0], d[1]);
}
static inline void transpose_idct4x4_16_bd8(int16x8_t *const a) {
transpose_s16_4x4q(&a[0], &a[1]);
idct4x4_16_kernel_bd8(a);
}
inline void vpx_idct4x4_16_add_neon(const int16x8_t &top64, const int16x8_t &bottom64, int16_t *dest, int16_t multiplier) {
int16x8_t a[2];
assert(!((intptr_t)dest % sizeof(uint32_t)));
int16x8_t mul = vdupq_n_s16(multiplier);
// Rows
a[0] = vmulq_s16(top64, mul);
a[1] = vmulq_s16(bottom64, mul);
transpose_idct4x4_16_bd8(a);
// Columns
a[1] = vcombine_s16(vget_high_s16(a[1]), vget_low_s16(a[1]));
transpose_idct4x4_16_bd8(a);
a[0] = vrshrq_n_s16(a[0], 4);
a[1] = vrshrq_n_s16(a[1], 4);
vst1q_s16(dest, a[0]);
dest += 2 * 4;
vst1_s16(dest, vget_high_s16(a[1]));
dest += 4;
vst1_s16(dest, vget_low_s16(a[1]));
}
static int dct4x4QuantDC = 58;
static int dct4x4QuantAC = 58;
void performForward4x4Dct(int16_t const *normalizedCoefficients, int16_t *coefficients, int width, int height, DCTELEM *divisors) {
DCTELEM block[4 * 4];
DCTELEM coefBlock[4 * 4];
//int acOffset = (width / 4) * (height / 4);
for (int y = 0; y < height; y += 4) {
for (int x = 0; x < width; x += 4) {
for (int blockY = 0; blockY < 4; blockY++) {
for (int blockX = 0; blockX < 4; blockX++) {
block[blockY * 4 + blockX] = normalizedCoefficients[(y + blockY) * width + (x + blockX)];
}
}
vpx_fdct4x4_c(block, coefBlock, 4);
coefBlock[0] /= dct4x4QuantDC;
for (int blockY = 0; blockY < 4; blockY++) {
for (int blockX = 0; blockX < 4; blockX++) {
if (blockX == 0 && blockY == 0) {
continue;
}
coefBlock[blockY * 4 + blockX] /= dct4x4QuantAC;
}
}
//coefficients[(y / 4) * (width / 4) + x / 4] = coefBlock[0];
for (int blockY = 0; blockY < 4; blockY++) {
for (int blockX = 0; blockX < 4; blockX++) {
/*if (blockX == 0 && blockY == 0) {
continue;
}*/
coefficients[(y + blockY) * width + (x + blockX)] = coefBlock[zigZag4x4Inv[blockY * 4 + blockX]];
//coefficients[acOffset] = coefBlock[zigZag4x4Inv[blockY * 4 + blockX]];
//acOffset++;
//coefficients[(y + blockY) * width + (x + blockX)] = coefBlock[blockY * 4 + blockX];
//int targetIndex = (blockY * 4 + blockX) * (width / 4 * height / 4) + blockIndex;
//coefficients[targetIndex] = coefBlock[zigZag4x4Inv[blockY * 4 + blockX]];
}
}
}
}
}
void performInverse4x4Dct(int16_t const * coefficients, int16_t *normalizedCoefficients, int width, int height, DctAuxiliaryData *auxiliaryData, IFAST_MULT_TYPE *ifmtbl) {
DCTELEM resultBlock[4 * 4];
for (int y = 0; y < height; y += 4) {
for (int x = 0; x < width; x += 4) {
uint32x2_t sa = vld1_u32((uint32_t *)&coefficients[(y + 0) * width + x]);
uint32x2_t sb = vld1_u32((uint32_t *)&coefficients[(y + 1) * width + x]);
uint32x2_t sc = vld1_u32((uint32_t *)&coefficients[(y + 2) * width + x]);
uint32x2_t sd = vld1_u32((uint32_t *)&coefficients[(y + 3) * width + x]);
uint8x16_t top = vreinterpretq_u8_u32(vcombine_u32(sa, sb));
uint8x16_t bottom = vreinterpretq_u8_u32(vcombine_u32(sc, sd));
uint8x16x2_t quad = vzipq_u8(top, bottom);
uint8_t topReorderIndices[16] = {0, 2, 4, 6, 20, 22, 24, 26, 8, 10, 16, 18, 28, 30, 17, 19};
uint8_t bottomReorderIndices[16] = {12, 14, 1, 3, 13, 15, 21, 23, 5, 7, 9, 11, 25, 27, 29, 31};
uint8x16_t qtop = vqtbl2q_u8(quad, vld1q_u8(topReorderIndices));
uint8x16_t qbottom = vqtbl2q_u8(quad, vld1q_u8(bottomReorderIndices));
uint16x8_t qtop16 = vreinterpretq_s16_u8(qtop);
uint16x8_t qbottom16 = vreinterpretq_s16_u8(qbottom);
int16x8_t top64 = vreinterpretq_s16_u16(qtop16);
int16x8_t bottom64 = vreinterpretq_s16_u16(qbottom16);
/*DCTELEM coefficientBlock[4 * 4];
for (int blockY = 0; blockY < 4; blockY++) {
for (int blockX = 0; blockX < 4; blockX++) {
coefficientBlock[zigZag4x4Inv[blockY * 4 + blockX]] = coefficients[(y + blockY) * width + (x + blockX)];
}
}
top64 = vreinterpretq_s16_u64(vld1q_u64((uint64_t *)&coefficientBlock[0]));
bottom64 = vreinterpretq_s16_u64(vld1q_u64((uint64_t *)&coefficientBlock[8]));*/
vpx_idct4x4_16_add_neon(top64, bottom64, resultBlock, dct4x4QuantAC);
uint32x2_t a = vld1_u32((uint32_t *)&resultBlock[4 * 0]);
uint32x2_t b = vld1_u32((uint32_t *)&resultBlock[4 * 1]);
uint32x2_t c = vld1_u32((uint32_t *)&resultBlock[4 * 2]);
uint32x2_t d = vld1_u32((uint32_t *)&resultBlock[4 * 3]);
vst1_u32((uint32_t *)&normalizedCoefficients[(y + 0) * width + x], a);
vst1_u32((uint32_t *)&normalizedCoefficients[(y + 1) * width + x], b);
vst1_u32((uint32_t *)&normalizedCoefficients[(y + 2) * width + x], c);
vst1_u32((uint32_t *)&normalizedCoefficients[(y + 3) * width + x], d);
/*for (int blockY = 0; blockY < 4; blockY++) {
for (int blockX = 0; blockX < 4; blockX++) {
normalizedCoefficients[(y + blockY) * width + (x + blockX)] = resultBlock[blockY * 4 + blockX];
}
}*/
}
}
}
}
namespace dct {
DCTTable DCTTable::generate(int quality, DCTTable::Type type) {
DCTTable result;
result.table.resize(DCTSIZE2);
switch (type) {
case DCTTable::Type::Luma:
jpeg_set_quality(result.table.data(), std_luminance_quant_tbl, quality);
break;
case DCTTable::Type::Chroma:
jpeg_set_quality(result.table.data(), std_chrominance_quant_tbl, quality);
break;
case DCTTable::Type::Delta:
jpeg_set_quality(result.table.data(), std_delta_quant_tbl, quality);
break;
default:
jpeg_set_quality(result.table.data(), std_luminance_quant_tbl, quality);
break;
}
return result;
}
DCTTable DCTTable::initializeEmpty() {
DCTTable result;
result.table.resize(DCTSIZE2);
return result;
}
class DCTInternal {
public:
DCTInternal(DCTTable const &dctTable) {
auxiliaryData = createDctAuxiliaryData();
generateForwardDctData(dctTable.table.data(), forwardDctData);
generateInverseDctData(dctTable.table.data(), inverseDctData);
}
~DCTInternal() {
freeDctAuxiliaryData(auxiliaryData);
}
public:
struct DctAuxiliaryData *auxiliaryData = nullptr;
std::vector<uint8_t> forwardDctData;
std::vector<uint8_t> inverseDctData;
};
DCT::DCT(DCTTable const &dctTable) {
_internal = new DCTInternal(dctTable);
}
DCT::~DCT() {
delete _internal;
}
void DCT::forward(uint8_t const *pixels, int16_t *coefficients, int width, int height, int bytesPerRow) {
performForwardDct(pixels, coefficients, width, height, bytesPerRow, (DCTELEM *)_internal->forwardDctData.data());
}
void DCT::inverse(int16_t const *coefficients, uint8_t *pixels, int width, int height, int coefficientsPerRow, int bytesPerRow) {
performInverseDct(coefficients, pixels, width, height, coefficientsPerRow, bytesPerRow, _internal->auxiliaryData, (IFAST_MULT_TYPE *)_internal->inverseDctData.data());
}
void DCT::forward4x4(int16_t const *normalizedCoefficients, int16_t *coefficients, int width, int height) {
performForward4x4Dct(normalizedCoefficients, coefficients, width, height, (DCTELEM *)_internal->forwardDctData.data());
}
void DCT::inverse4x4(int16_t const *coefficients, int16_t *normalizedCoefficients, int width, int height) {
performInverse4x4Dct(coefficients, normalizedCoefficients, width, height, _internal->auxiliaryData, (IFAST_MULT_TYPE *)_internal->inverseDctData.data());
}
}