Swiftgram/submodules/DrawingUI/Sources/DrawingUtils.swift
2022-12-17 15:35:00 +04:00

827 lines
28 KiB
Swift

import Foundation
import UIKit
import QuartzCore
import simd
struct DrawingColor: Equatable, Codable {
private enum CodingKeys: String, CodingKey {
case red
case green
case blue
case alpha
case position
}
public static var clear = DrawingColor(red: 0.0, green: 0.0, blue: 0.0, alpha: 0.0)
public var red: CGFloat
public var green: CGFloat
public var blue: CGFloat
public var alpha: CGFloat
public var position: CGPoint?
var isClear: Bool {
return self.red.isZero && self.green.isZero && self.blue.isZero && self.alpha.isZero
}
public init(
red: CGFloat,
green: CGFloat,
blue: CGFloat,
alpha: CGFloat = 1.0,
position: CGPoint? = nil
) {
self.red = red
self.green = green
self.blue = blue
self.alpha = alpha
self.position = position
}
public init(color: UIColor) {
var red: CGFloat = 0.0
var green: CGFloat = 0.0
var blue: CGFloat = 0.0
var alpha: CGFloat = 1.0
if color.getRed(&red, green: &green, blue: &blue, alpha: &alpha) {
self.init(red: red, green: green, blue: blue, alpha: alpha)
} else if color.getWhite(&red, alpha: &alpha) {
self.init(red: red, green: red, blue: red, alpha: alpha)
} else {
self.init(red: 0.0, green: 0.0, blue: 0.0)
}
}
public init(rgb: UInt32) {
self.init(color: UIColor(rgb: rgb))
}
init(from decoder: Decoder) throws {
let container = try decoder.container(keyedBy: CodingKeys.self)
self.red = try container.decode(CGFloat.self, forKey: .red)
self.green = try container.decode(CGFloat.self, forKey: .green)
self.blue = try container.decode(CGFloat.self, forKey: .blue)
self.alpha = try container.decode(CGFloat.self, forKey: .alpha)
self.position = try container.decodeIfPresent(CGPoint.self, forKey: .position)
}
public func encode(to encoder: Encoder) throws {
var container = encoder.container(keyedBy: CodingKeys.self)
try container.encode(self.red, forKey: .red)
try container.encode(self.green, forKey: .green)
try container.encode(self.blue, forKey: .blue)
try container.encode(self.alpha, forKey: .alpha)
try container.encodeIfPresent(self.position, forKey: .position)
}
func withUpdatedRed(_ red: CGFloat) -> DrawingColor {
return DrawingColor(
red: red,
green: self.green,
blue: self.blue,
alpha: self.alpha
)
}
func withUpdatedGreen(_ green: CGFloat) -> DrawingColor {
return DrawingColor(
red: self.red,
green: green,
blue: self.blue,
alpha: self.alpha
)
}
func withUpdatedBlue(_ blue: CGFloat) -> DrawingColor {
return DrawingColor(
red: self.red,
green: self.green,
blue: blue,
alpha: self.alpha
)
}
func withUpdatedAlpha(_ alpha: CGFloat) -> DrawingColor {
return DrawingColor(
red: self.red,
green: self.green,
blue: self.blue,
alpha: alpha,
position: self.position
)
}
func withUpdatedPosition(_ position: CGPoint) -> DrawingColor {
return DrawingColor(
red: self.red,
green: self.green,
blue: self.blue,
alpha: self.alpha,
position: position
)
}
func toUIColor() -> UIColor {
return UIColor(
red: self.red,
green: self.green,
blue: self.blue,
alpha: self.alpha
)
}
func toCGColor() -> CGColor {
return self.toUIColor().cgColor
}
func toFloat4() -> vector_float4 {
return [
simd_float1(self.red),
simd_float1(self.green),
simd_float1(self.blue),
simd_float1(self.alpha)
]
}
public static func ==(lhs: DrawingColor, rhs: DrawingColor) -> Bool {
if lhs.red != rhs.red {
return false
}
if lhs.green != rhs.green {
return false
}
if lhs.blue != rhs.blue {
return false
}
if lhs.alpha != rhs.alpha {
return false
}
return true
}
}
extension UIBezierPath {
convenience init(roundRect rect: CGRect, topLeftRadius: CGFloat = 0.0, topRightRadius: CGFloat = 0.0, bottomLeftRadius: CGFloat = 0.0, bottomRightRadius: CGFloat = 0.0) {
self.init()
let path = CGMutablePath()
let topLeft = rect.origin
let topRight = CGPoint(x: rect.maxX, y: rect.minY)
let bottomRight = CGPoint(x: rect.maxX, y: rect.maxY)
let bottomLeft = CGPoint(x: rect.minX, y: rect.maxY)
if topLeftRadius != .zero {
path.move(to: CGPoint(x: topLeft.x+topLeftRadius, y: topLeft.y))
} else {
path.move(to: CGPoint(x: topLeft.x, y: topLeft.y))
}
if topRightRadius != .zero {
path.addLine(to: CGPoint(x: topRight.x-topRightRadius, y: topRight.y))
path.addCurve(to: CGPoint(x: topRight.x, y: topRight.y+topRightRadius), control1: CGPoint(x: topRight.x, y: topRight.y), control2:CGPoint(x: topRight.x, y: topRight.y + topRightRadius))
} else {
path.addLine(to: CGPoint(x: topRight.x, y: topRight.y))
}
if bottomRightRadius != .zero {
path.addLine(to: CGPoint(x: bottomRight.x, y: bottomRight.y-bottomRightRadius))
path.addCurve(to: CGPoint(x: bottomRight.x-bottomRightRadius, y: bottomRight.y), control1: CGPoint(x: bottomRight.x, y: bottomRight.y), control2: CGPoint(x: bottomRight.x-bottomRightRadius, y: bottomRight.y))
} else {
path.addLine(to: CGPoint(x: bottomRight.x, y: bottomRight.y))
}
if bottomLeftRadius != .zero {
path.addLine(to: CGPoint(x: bottomLeft.x+bottomLeftRadius, y: bottomLeft.y))
path.addCurve(to: CGPoint(x: bottomLeft.x, y: bottomLeft.y-bottomLeftRadius), control1: CGPoint(x: bottomLeft.x, y: bottomLeft.y), control2: CGPoint(x: bottomLeft.x, y: bottomLeft.y-bottomLeftRadius))
} else {
path.addLine(to: CGPoint(x: bottomLeft.x, y: bottomLeft.y))
}
if topLeftRadius != .zero {
path.addLine(to: CGPoint(x: topLeft.x, y: topLeft.y+topLeftRadius))
path.addCurve(to: CGPoint(x: topLeft.x+topLeftRadius, y: topLeft.y) , control1: CGPoint(x: topLeft.x, y: topLeft.y) , control2: CGPoint(x: topLeft.x+topLeftRadius, y: topLeft.y))
} else {
path.addLine(to: CGPoint(x: topLeft.x, y: topLeft.y))
}
path.closeSubpath()
self.cgPath = path
}
}
extension CGPoint {
func isEqual(to point: CGPoint, epsilon: CGFloat) -> Bool {
if x - epsilon <= point.x && point.x <= x + epsilon && y - epsilon <= point.y && point.y <= y + epsilon {
return true
}
return false
}
static public func + (lhs: CGPoint, rhs: CGPoint) -> CGPoint {
return CGPoint(x: lhs.x + rhs.x, y: lhs.y + rhs.y)
}
static public func - (lhs: CGPoint, rhs: CGPoint) -> CGPoint {
return CGPoint(x: lhs.x - rhs.x, y: lhs.y - rhs.y)
}
static public func * (lhs: CGPoint, rhs: CGFloat) -> CGPoint {
return CGPoint(x: lhs.x * rhs, y: lhs.y * rhs)
}
static public func / (lhs: CGPoint, rhs: CGFloat) -> CGPoint {
return CGPoint(x: lhs.x / rhs, y: lhs.y / rhs)
}
var length: CGFloat {
return sqrt(self.x * self.x + self.y * self.y)
}
static func middle(p1: CGPoint, p2: CGPoint) -> CGPoint {
return CGPoint(x: (p1.x + p2.x) * 0.5, y: (p1.y + p2.y) * 0.5)
}
func distance(to point: CGPoint) -> CGFloat {
return sqrt(pow((point.x - self.x), 2) + pow((point.y - self.y), 2))
}
func distanceSquared(to point: CGPoint) -> CGFloat {
return pow((point.x - self.x), 2) + pow((point.y - self.y), 2)
}
func angle(to point: CGPoint) -> CGFloat {
return atan2((point.y - self.y), (point.x - self.x))
}
func pointAt(distance: CGFloat, angle: CGFloat) -> CGPoint {
return CGPoint(x: distance * cos(angle) + self.x, y: distance * sin(angle) + self.y)
}
func point(to point: CGPoint, t: CGFloat) -> CGPoint {
return CGPoint(x: self.x + t * (point.x - self.x), y: self.y + t * (point.y - self.y))
}
func perpendicularPointOnLine(start: CGPoint, end: CGPoint) -> CGPoint {
let l2 = start.distanceSquared(to: end)
if l2.isZero {
return start
}
let t = ((self.x - start.x) * (end.x - start.x) + (self.y - start.y) * (end.y - start.y)) / l2
return CGPoint(x: start.x + t * (end.x - start.x), y: start.y + t * (end.y - start.y))
}
func linearBezierPoint(to: CGPoint, t: CGFloat) -> CGPoint {
let dx = to.x - x;
let dy = to.y - y;
let px = x + (t * dx);
let py = y + (t * dy);
return CGPoint(x: px, y: py)
}
fileprivate func _cubicBezier(_ t: CGFloat, _ start: CGFloat, _ c1: CGFloat, _ c2: CGFloat, _ end: CGFloat) -> CGFloat {
let _t = 1 - t;
let _t2 = _t * _t;
let _t3 = _t * _t * _t ;
let t2 = t * t;
let t3 = t * t * t;
return _t3 * start +
3.0 * _t2 * t * c1 +
3.0 * _t * t2 * c2 +
t3 * end;
}
func cubicBezierPoint(to: CGPoint, controlPoint1 c1: CGPoint, controlPoint2 c2: CGPoint, t: CGFloat) -> CGPoint {
let x = _cubicBezier(t, self.x, c1.x, c2.x, to.x);
let y = _cubicBezier(t, self.y, c1.y, c2.y, to.y);
return CGPoint(x: x, y: y);
}
fileprivate func _quadBezier(_ t: CGFloat, _ start: CGFloat, _ c1: CGFloat, _ end: CGFloat) -> CGFloat {
let _t = 1 - t;
let _t2 = _t * _t;
let t2 = t * t;
return _t2 * start +
2 * _t * t * c1 +
t2 * end;
}
func quadBezierPoint(to: CGPoint, controlPoint: CGPoint, t: CGFloat) -> CGPoint {
let x = _quadBezier(t, self.x, controlPoint.x, to.x);
let y = _quadBezier(t, self.y, controlPoint.y, to.y);
return CGPoint(x: x, y: y);
}
}
extension CGPath {
static func star(in rect: CGRect, extrusion: CGFloat, points: Int = 5) -> CGPath {
func pointFrom(angle: CGFloat, radius: CGFloat, offset: CGPoint) -> CGPoint {
return CGPoint(x: radius * cos(angle) + offset.x, y: radius * sin(angle) + offset.y)
}
let path = CGMutablePath()
let center = rect.center.offsetBy(dx: 0.0, dy: rect.height * 0.05)
var angle: CGFloat = -CGFloat(.pi / 2.0)
let angleIncrement = CGFloat(.pi * 2.0 / Double(points))
let radius = rect.width / 2.0
var firstPoint = true
for _ in 1 ... points {
let point = center.pointAt(distance: radius, angle: angle)
let nextPoint = center.pointAt(distance: radius, angle: angle + angleIncrement)
let midPoint = center.pointAt(distance: extrusion, angle: angle + angleIncrement * 0.5)
if firstPoint {
firstPoint = false
path.move(to: point)
}
path.addLine(to: midPoint)
path.addLine(to: nextPoint)
angle += angleIncrement
}
path.closeSubpath()
return path
}
static func arrow(from point: CGPoint, controlPoint: CGPoint, width: CGFloat, height: CGFloat, isOpen: Bool) -> CGPath {
let angle = atan2(point.y - controlPoint.y, point.x - controlPoint.x)
let angleAdjustment = atan2(width, -height)
let distance = hypot(width, height)
let path = CGMutablePath()
path.move(to: point)
path.addLine(to: point.pointAt(distance: distance, angle: angle - angleAdjustment))
if isOpen {
path.addLine(to: point)
}
path.addLine(to: point.pointAt(distance: distance, angle: angle + angleAdjustment))
if isOpen {
path.addLine(to: point)
} else {
path.closeSubpath()
}
return path
}
static func curve(start: CGPoint, end: CGPoint, mid: CGPoint, lineWidth: CGFloat?, arrowSize: CGSize?, twoSided: Bool = false) -> CGPath {
let linePath = CGMutablePath()
let controlPoints = configureControlPoints(data: [start, mid, end])
var lineStart = start
if let arrowSize = arrowSize, twoSided {
lineStart = start.pointAt(distance: -arrowSize.height * 0.5, angle: controlPoints[0].ctrl1.angle(to: start))
}
linePath.move(to: lineStart)
linePath.addCurve(to: mid, control1: controlPoints[0].ctrl1, control2: controlPoints[0].ctrl2)
var lineEnd = end
if let arrowSize = arrowSize {
lineEnd = end.pointAt(distance: -arrowSize.height * 0.5, angle: controlPoints[1].ctrl1.angle(to: end))
}
linePath.addCurve(to: lineEnd, control1: controlPoints[1].ctrl1, control2: controlPoints[1].ctrl2)
let path: CGMutablePath
if let lineWidth = lineWidth, let mutablePath = linePath.copy(strokingWithWidth: lineWidth, lineCap: .square, lineJoin: .round, miterLimit: 0.0).mutableCopy() {
path = mutablePath
} else {
path = linePath
}
if let arrowSize = arrowSize {
let arrowPath = arrow(from: end, controlPoint: controlPoints[1].ctrl1, width: arrowSize.width, height: arrowSize.height, isOpen: false)
path.addPath(arrowPath)
if twoSided {
let secondArrowPath = arrow(from: start, controlPoint: controlPoints[0].ctrl1, width: arrowSize.width, height: arrowSize.height, isOpen: false)
path.addPath(secondArrowPath)
}
}
return path
}
static func bubble(in rect: CGRect, cornerRadius: CGFloat, smallCornerRadius: CGFloat, tailPosition: CGPoint, tailWidth: CGFloat) -> CGPath {
let r1 = min(cornerRadius, min(rect.width, rect.height) / 3.0)
let r2 = min(smallCornerRadius, min(rect.width, rect.height) / 10.0)
let ax = tailPosition.x * rect.width
let ay = tailPosition.y
let width = min(max(tailWidth, ay / 2.0), rect.width / 4.0)
let angle = atan2(ay, width)
let h = r2 / tan(angle / 2.0)
let r1a = min(r1, min(rect.maxX - ax, ax - rect.minX) * 0.5)
let r2a = min(r2, min(rect.maxX - ax, ax - rect.minX) * 0.2)
let path = CGMutablePath()
path.addArc(center: CGPoint(x: rect.minX + r1, y: rect.minY + r1), radius: r1, startAngle: .pi, endAngle: .pi * 3.0 / 2.0, clockwise: false)
path.addArc(center: CGPoint(x: rect.maxX - r1, y: rect.minY + r1), radius: r1, startAngle: -.pi / 2.0, endAngle: 0.0, clockwise: false)
if ax > rect.width / 2.0 {
if ax < rect.width - 1 {
path.addArc(center: CGPoint(x: rect.maxX - r1a, y: rect.maxY - r1a), radius: r1a, startAngle: 0.0, endAngle: .pi / 2.0, clockwise: false)
path.addArc(center: CGPoint(x: rect.minX + ax + r2a, y: rect.maxY + r2a), radius: r2a, startAngle: .pi * 3.0 / 2.0, endAngle: .pi, clockwise: true)
}
path.addLine(to: CGPoint(x: rect.minX + ax, y: rect.maxY + ay))
path.addArc(center: CGPoint(x: rect.minX + ax - width - r2, y: rect.maxY + h), radius: h, startAngle: -(CGFloat.pi / 2 - angle), endAngle: CGFloat.pi * 3 / 2, clockwise: true)
path.addArc(center: CGPoint(x: rect.minX + r1, y: rect.maxY - r1), radius: r1, startAngle: CGFloat.pi / 2, endAngle: CGFloat.pi, clockwise: false)
} else {
path.addArc(center: CGPoint(x: rect.maxX - r1, y: rect.maxY - r1), radius: r1, startAngle: 0, endAngle: CGFloat.pi / 2, clockwise: false)
path.addArc(center: CGPoint(x: rect.minX + ax + width + r2, y: rect.maxY + h), radius: h, startAngle: CGFloat.pi * 3 / 2, endAngle: CGFloat.pi * 3 / 2 - angle, clockwise: true)
path.addLine(to: CGPoint(x: rect.minX + ax, y: rect.maxY + ay))
if ax > 1 {
path.addArc(center: CGPoint(x: rect.minX + ax - r2a, y: rect.maxY + r2a), radius: r2a, startAngle: 0, endAngle: CGFloat.pi * 3 / 2, clockwise: true)
path.addArc(center: CGPoint(x: rect.minX + r1a, y: rect.maxY - r1a), radius: r1a, startAngle: CGFloat.pi / 2, endAngle: CGFloat.pi, clockwise: false)
}
}
path.closeSubpath()
return path
}
}
private func configureControlPoints(data: [CGPoint]) -> [(ctrl1: CGPoint, ctrl2: CGPoint)] {
let segments = data.count - 1
if segments == 1 {
let p0 = data[0]
let p3 = data[1]
return [(p0, p3)]
} else if segments > 1 {
var ad: [CGFloat] = []
var d: [CGFloat] = []
var bd: [CGFloat] = []
var rhsArray: [CGPoint] = []
for i in 0 ..< segments {
var rhsXValue: CGFloat = 0.0
var rhsYValue: CGFloat = 0.0
let p0 = data[i]
let p3 = data[i + 1]
if i == 0 {
bd.append(0.0)
d.append(2.0)
ad.append(1.0)
rhsXValue = p0.x + 2.0 * p3.x
rhsYValue = p0.y + 2.0 * p3.y
} else if i == segments - 1 {
bd.append(2.0)
d.append(7.0)
ad.append(0.0)
rhsXValue = 8.0 * p0.x + p3.x
rhsYValue = 8.0 * p0.y + p3.y
} else {
bd.append(1.0)
d.append(4.0)
ad.append(1.0)
rhsXValue = 4.0 * p0.x + 2.0 * p3.x
rhsYValue = 4.0 * p0.y + 2.0 * p3.y
}
rhsArray.append(CGPoint(x: rhsXValue, y: rhsYValue))
}
var firstControlPoints: [CGPoint?] = []
var secondControlPoints: [CGPoint?] = []
var controlPoints : [(CGPoint, CGPoint)] = []
var solutionSet1 = [CGPoint?]()
solutionSet1 = Array(repeating: nil, count: segments)
ad[0] = ad[0] / d[0]
rhsArray[0].x = rhsArray[0].x / d[0]
rhsArray[0].y = rhsArray[0].y / d[0]
if segments > 2 {
for i in 1...segments - 2 {
let rhsValueX = rhsArray[i].x
let prevRhsValueX = rhsArray[i - 1].x
let rhsValueY = rhsArray[i].y
let prevRhsValueY = rhsArray[i - 1].y
ad[i] = ad[i] / (d[i] - bd[i] * ad[i - 1]);
let exp1x = (rhsValueX - (bd[i] * prevRhsValueX))
let exp1y = (rhsValueY - (bd[i] * prevRhsValueY))
let exp2 = (d[i] - bd[i] * ad[i - 1])
rhsArray[i].x = exp1x / exp2
rhsArray[i].y = exp1y / exp2
}
}
let lastElementIndex = segments - 1
let exp1 = (rhsArray[lastElementIndex].x - bd[lastElementIndex] * rhsArray[lastElementIndex - 1].x)
let exp1y = (rhsArray[lastElementIndex].y - bd[lastElementIndex] * rhsArray[lastElementIndex - 1].y)
let exp2 = (d[lastElementIndex] - bd[lastElementIndex] * ad[lastElementIndex - 1])
rhsArray[lastElementIndex].x = exp1 / exp2
rhsArray[lastElementIndex].y = exp1y / exp2
solutionSet1[lastElementIndex] = rhsArray[lastElementIndex]
for i in (0..<lastElementIndex).reversed() {
let controlPointX = rhsArray[i].x - (ad[i] * solutionSet1[i + 1]!.x)
let controlPointY = rhsArray[i].y - (ad[i] * solutionSet1[i + 1]!.y)
solutionSet1[i] = CGPoint(x: controlPointX, y: controlPointY)
}
firstControlPoints = solutionSet1
for i in (0..<segments) {
if i == (segments - 1) {
let lastDataPoint = data[i + 1]
let p1 = firstControlPoints[i]
guard let controlPoint1 = p1 else { continue }
let controlPoint2X = 0.5 * (lastDataPoint.x + controlPoint1.x)
let controlPoint2y = 0.5 * (lastDataPoint.y + controlPoint1.y)
let controlPoint2 = CGPoint(x: controlPoint2X, y: controlPoint2y)
secondControlPoints.append(controlPoint2)
}else {
let dataPoint = data[i+1]
let p1 = firstControlPoints[i+1]
guard let controlPoint1 = p1 else { continue }
let controlPoint2X = 2*dataPoint.x - controlPoint1.x
let controlPoint2Y = 2*dataPoint.y - controlPoint1.y
secondControlPoints.append(CGPoint(x: controlPoint2X, y: controlPoint2Y))
}
}
for i in (0..<segments) {
guard let firstControlPoint = firstControlPoints[i] else { continue }
guard let secondControlPoint = secondControlPoints[i] else { continue }
controlPoints.append((firstControlPoint, secondControlPoint))
}
return controlPoints
}
return []
}
class BezierPath {
struct Element {
enum ElementType {
case moveTo
case addLine
case cubicCurve
case quadCurve
}
let type: ElementType
var startPoint: Polyline.Point
var endPoint: Polyline.Point
var controlPoints: [CGPoint]
var lengthRange: ClosedRange<CGFloat>?
var calculatedLength: CGFloat?
func point(at t: CGFloat) -> CGPoint {
switch self.type {
case .addLine:
return self.startPoint.location.linearBezierPoint(to: self.endPoint.location, t: t)
case .cubicCurve:
return self.startPoint.location.cubicBezierPoint(to: self.endPoint.location, controlPoint1: self.controlPoints[0], controlPoint2: self.controlPoints[1], t: t)
case .quadCurve:
return self.startPoint.location.quadBezierPoint(to: self.endPoint.location, controlPoint: self.controlPoints[0], t: t)
default:
return .zero
}
}
}
let path = UIBezierPath()
var elements: [Element] = []
var elementCount: Int {
return self.elements.count
}
func element(at t: CGFloat) -> (element: Element, innerT: CGFloat)? {
let t = min(max(0.0, t), 1.0)
for element in elements {
if let lengthRange = element.lengthRange, lengthRange.contains(t) {
let innerT = (t - lengthRange.lowerBound) / (lengthRange.upperBound - lengthRange.lowerBound)
return (element, innerT)
}
}
return nil
}
var points: [Int: CGPoint] = [:]
func point(at t: CGFloat) -> CGPoint? {
if let (element, innerT) = self.element(at: t) {
return element.point(at: innerT)
} else {
return nil
}
}
func append(_ element: Element) {
self.elements.append(element)
switch element.type {
case .moveTo:
self.move(to: element.startPoint.location)
case .addLine:
self.addLine(to: element.endPoint.location)
case .cubicCurve:
self.addCurve(to: element.endPoint.location, controlPoint1: element.controlPoints[0], controlPoint2: element.controlPoints[1])
case .quadCurve:
self.addQuadCurve(to: element.endPoint.location, controlPoint: element.controlPoints[0])
}
}
private func move(to point: CGPoint) {
self.path.move(to: point)
}
private func addLine(to point: CGPoint) {
self.path.addLine(to: point)
}
private func addQuadCurve(to point: CGPoint, controlPoint: CGPoint) {
self.path.addQuadCurve(to: point, controlPoint: controlPoint)
}
private func addCurve(to point: CGPoint, controlPoint1: CGPoint, controlPoint2: CGPoint) {
self.path.addCurve(to: point, controlPoint1: controlPoint1, controlPoint2: controlPoint2)
}
private func close() {
self.path.close()
}
func trimming(to elementIndex: Int) -> BezierPath {
let outputPath = BezierPath()
for element in self.elements[0 ... elementIndex] {
outputPath.append(element)
}
return outputPath
}
func closedCopy() -> BezierPath {
let outputPath = BezierPath()
for element in self.elements {
outputPath.append(element)
}
outputPath.close()
return outputPath
}
}
func concaveHullPath(points: [CGPoint]) -> CGPath {
let hull = getHull(points, concavity: 1000.0)
let hullPath = CGMutablePath()
var moved = true
for point in hull {
if moved {
hullPath.move(to: point)
moved = false
} else {
hullPath.addLine(to: point)
}
}
hullPath.closeSubpath()
return hullPath
}
func expandPath(_ path: CGPath, width: CGFloat) -> CGPath {
let expandedPath = path.copy(strokingWithWidth: width * 2.0, lineCap: .round, lineJoin: .round, miterLimit: 0.0)
class UserInfo {
let outputPath = CGMutablePath()
var passedFirst = false
}
var userInfo = UserInfo()
withUnsafeMutablePointer(to: &userInfo) { userInfoPointer in
expandedPath.apply(info: userInfoPointer) { (userInfo, nextElementPointer) in
let element = nextElementPointer.pointee
let userInfoPointer = userInfo!.assumingMemoryBound(to: UserInfo.self)
let userInfo = userInfoPointer.pointee
if !userInfo.passedFirst {
if case .closeSubpath = element.type {
userInfo.passedFirst = true
}
} else {
switch element.type {
case .moveToPoint:
userInfo.outputPath.move(to: element.points[0])
case .addLineToPoint:
userInfo.outputPath.addLine(to: element.points[0])
case .addQuadCurveToPoint:
userInfo.outputPath.addQuadCurve(to: element.points[1], control: element.points[0])
case .addCurveToPoint:
userInfo.outputPath.addCurve(to: element.points[2], control1: element.points[0], control2: element.points[1])
case .closeSubpath:
userInfo.outputPath.closeSubpath()
@unknown default:
userInfo.outputPath.closeSubpath()
}
}
}
}
return userInfo.outputPath
}
class Matrix {
private(set) var m: [Float]
private init() {
m = [
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
]
}
@discardableResult
func translation(x: Float, y: Float, z: Float) -> Matrix {
m[12] = x
m[13] = y
m[14] = z
return self
}
@discardableResult
func scaling(x: Float, y: Float, z: Float) -> Matrix {
m[0] = x
m[5] = y
m[10] = z
return self
}
static var identity = Matrix()
}
struct Vertex {
var position: vector_float4
var texCoord: vector_float2
init(position: CGPoint, texCoord: CGPoint) {
self.position = position.toFloat4()
self.texCoord = texCoord.toFloat2()
}
}
struct Point {
var position: vector_float4
var color: vector_float4
var angle: Float
var size: Float
init(x: CGFloat, y: CGFloat, color: DrawingColor, size: CGFloat, angle: CGFloat = 0) {
self.position = vector_float4(Float(x), Float(y), 0, 1)
self.size = Float(size)
self.color = color.toFloat4()
self.angle = Float(angle)
}
}
extension CGPoint {
func toFloat4(z: CGFloat = 0, w: CGFloat = 1) -> vector_float4 {
return [Float(x), Float(y), Float(z) ,Float(w)]
}
func toFloat2() -> vector_float2 {
return [Float(x), Float(y)]
}
func offsetBy(_ offset: CGPoint) -> CGPoint {
return self.offsetBy(dx: offset.x, dy: offset.y)
}
}