mirror of
https://github.com/Swiftgram/Telegram-iOS.git
synced 2025-06-16 05:55:20 +00:00
992 lines
38 KiB
Objective-C
992 lines
38 KiB
Objective-C
#import <DCT/DCT.h>
|
|
|
|
typedef long JLONG;
|
|
|
|
typedef unsigned char JSAMPLE;
|
|
#define GETJSAMPLE(value) ((int)(value))
|
|
|
|
#define MAXJSAMPLE 255
|
|
#define CENTERJSAMPLE 128
|
|
|
|
typedef short JCOEF;
|
|
|
|
typedef unsigned int JDIMENSION;
|
|
|
|
#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */
|
|
|
|
#define MULTIPLIER short /* prefer 16-bit with SIMD for parellelism */
|
|
|
|
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
|
|
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
|
|
|
|
/* Various constants determining the sizes of things.
|
|
* All of these are specified by the JPEG standard, so don't change them
|
|
* if you want to be compatible.
|
|
*/
|
|
|
|
#define DCTSIZE 8 /* The basic DCT block is 8x8 samples */
|
|
#define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */
|
|
#define NUM_QUANT_TBLS 4 /* Quantization tables are numbered 0..3 */
|
|
#define NUM_HUFF_TBLS 4 /* Huffman tables are numbered 0..3 */
|
|
#define NUM_ARITH_TBLS 16 /* Arith-coding tables are numbered 0..15 */
|
|
#define MAX_COMPS_IN_SCAN 4 /* JPEG limit on # of components in one scan */
|
|
#define MAX_SAMP_FACTOR 4 /* JPEG limit on sampling factors */
|
|
/* Unfortunately, some bozo at Adobe saw no reason to be bound by the standard;
|
|
* the PostScript DCT filter can emit files with many more than 10 blocks/MCU.
|
|
* If you happen to run across such a file, you can up D_MAX_BLOCKS_IN_MCU
|
|
* to handle it. We even let you do this from the jconfig.h file. However,
|
|
* we strongly discourage changing C_MAX_BLOCKS_IN_MCU; just because Adobe
|
|
* sometimes emits noncompliant files doesn't mean you should too.
|
|
*/
|
|
#define C_MAX_BLOCKS_IN_MCU 10 /* compressor's limit on blocks per MCU */
|
|
#ifndef D_MAX_BLOCKS_IN_MCU
|
|
#define D_MAX_BLOCKS_IN_MCU 10 /* decompressor's limit on blocks per MCU */
|
|
#endif
|
|
|
|
|
|
/* Data structures for images (arrays of samples and of DCT coefficients).
|
|
*/
|
|
|
|
typedef JSAMPLE *JSAMPROW; /* ptr to one image row of pixel samples. */
|
|
typedef JSAMPROW *JSAMPARRAY; /* ptr to some rows (a 2-D sample array) */
|
|
typedef JSAMPARRAY *JSAMPIMAGE; /* a 3-D sample array: top index is color */
|
|
|
|
typedef JCOEF JBLOCK[DCTSIZE2]; /* one block of coefficients */
|
|
typedef JBLOCK *JBLOCKROW; /* pointer to one row of coefficient blocks */
|
|
typedef JBLOCKROW *JBLOCKARRAY; /* a 2-D array of coefficient blocks */
|
|
typedef JBLOCKARRAY *JBLOCKIMAGE; /* a 3-D array of coefficient blocks */
|
|
|
|
typedef JCOEF *JCOEFPTR; /* useful in a couple of places */
|
|
|
|
#include <arm_neon.h>
|
|
|
|
/* jsimd_idct_ifast_neon() performs dequantization and a fast, not so accurate
|
|
* inverse DCT (Discrete Cosine Transform) on one block of coefficients. It
|
|
* uses the same calculations and produces exactly the same output as IJG's
|
|
* original jpeg_idct_ifast() function, which can be found in jidctfst.c.
|
|
*
|
|
* Scaled integer constants are used to avoid floating-point arithmetic:
|
|
* 0.082392200 = 2688 * 2^-15
|
|
* 0.414213562 = 13568 * 2^-15
|
|
* 0.847759065 = 27776 * 2^-15
|
|
* 0.613125930 = 20096 * 2^-15
|
|
*
|
|
* See jidctfst.c for further details of the IDCT algorithm. Where possible,
|
|
* the variable names and comments here in jsimd_idct_ifast_neon() match up
|
|
* with those in jpeg_idct_ifast().
|
|
*/
|
|
|
|
#define PASS1_BITS 2
|
|
|
|
#define F_0_082 2688
|
|
#define F_0_414 13568
|
|
#define F_0_847 27776
|
|
#define F_0_613 20096
|
|
|
|
|
|
__attribute__((aligned(16))) static const int16_t jsimd_idct_ifast_neon_consts[] = {
|
|
F_0_082, F_0_414, F_0_847, F_0_613
|
|
};
|
|
|
|
#define F_0_382 12544
|
|
#define F_0_541 17792
|
|
#define F_0_707 23168
|
|
#define F_0_306 9984
|
|
|
|
|
|
__attribute__((aligned(16))) static const int16_t jsimd_fdct_ifast_neon_consts[] = {
|
|
F_0_382, F_0_541, F_0_707, F_0_306
|
|
};
|
|
|
|
typedef short DCTELEM; /* prefer 16 bit with SIMD for parellelism */
|
|
typedef unsigned short UDCTELEM;
|
|
typedef unsigned int UDCTELEM2;
|
|
|
|
static void jsimd_fdct_ifast_neon(DCTELEM *data) {
|
|
/* Load an 8x8 block of samples into Neon registers. De-interleaving loads
|
|
* are used, followed by vuzp to transpose the block such that we have a
|
|
* column of samples per vector - allowing all rows to be processed at once.
|
|
*/
|
|
int16x8x4_t data1 = vld4q_s16(data);
|
|
int16x8x4_t data2 = vld4q_s16(data + 4 * DCTSIZE);
|
|
|
|
int16x8x2_t cols_04 = vuzpq_s16(data1.val[0], data2.val[0]);
|
|
int16x8x2_t cols_15 = vuzpq_s16(data1.val[1], data2.val[1]);
|
|
int16x8x2_t cols_26 = vuzpq_s16(data1.val[2], data2.val[2]);
|
|
int16x8x2_t cols_37 = vuzpq_s16(data1.val[3], data2.val[3]);
|
|
|
|
int16x8_t col0 = cols_04.val[0];
|
|
int16x8_t col1 = cols_15.val[0];
|
|
int16x8_t col2 = cols_26.val[0];
|
|
int16x8_t col3 = cols_37.val[0];
|
|
int16x8_t col4 = cols_04.val[1];
|
|
int16x8_t col5 = cols_15.val[1];
|
|
int16x8_t col6 = cols_26.val[1];
|
|
int16x8_t col7 = cols_37.val[1];
|
|
|
|
/* Pass 1: process rows. */
|
|
|
|
/* Load DCT conversion constants. */
|
|
const int16x4_t consts = vld1_s16(jsimd_fdct_ifast_neon_consts);
|
|
|
|
int16x8_t tmp0 = vaddq_s16(col0, col7);
|
|
int16x8_t tmp7 = vsubq_s16(col0, col7);
|
|
int16x8_t tmp1 = vaddq_s16(col1, col6);
|
|
int16x8_t tmp6 = vsubq_s16(col1, col6);
|
|
int16x8_t tmp2 = vaddq_s16(col2, col5);
|
|
int16x8_t tmp5 = vsubq_s16(col2, col5);
|
|
int16x8_t tmp3 = vaddq_s16(col3, col4);
|
|
int16x8_t tmp4 = vsubq_s16(col3, col4);
|
|
|
|
/* Even part */
|
|
int16x8_t tmp10 = vaddq_s16(tmp0, tmp3); /* phase 2 */
|
|
int16x8_t tmp13 = vsubq_s16(tmp0, tmp3);
|
|
int16x8_t tmp11 = vaddq_s16(tmp1, tmp2);
|
|
int16x8_t tmp12 = vsubq_s16(tmp1, tmp2);
|
|
|
|
col0 = vaddq_s16(tmp10, tmp11); /* phase 3 */
|
|
col4 = vsubq_s16(tmp10, tmp11);
|
|
|
|
int16x8_t z1 = vqdmulhq_lane_s16(vaddq_s16(tmp12, tmp13), consts, 2);
|
|
col2 = vaddq_s16(tmp13, z1); /* phase 5 */
|
|
col6 = vsubq_s16(tmp13, z1);
|
|
|
|
/* Odd part */
|
|
tmp10 = vaddq_s16(tmp4, tmp5); /* phase 2 */
|
|
tmp11 = vaddq_s16(tmp5, tmp6);
|
|
tmp12 = vaddq_s16(tmp6, tmp7);
|
|
|
|
int16x8_t z5 = vqdmulhq_lane_s16(vsubq_s16(tmp10, tmp12), consts, 0);
|
|
int16x8_t z2 = vqdmulhq_lane_s16(tmp10, consts, 1);
|
|
z2 = vaddq_s16(z2, z5);
|
|
int16x8_t z4 = vqdmulhq_lane_s16(tmp12, consts, 3);
|
|
z5 = vaddq_s16(tmp12, z5);
|
|
z4 = vaddq_s16(z4, z5);
|
|
int16x8_t z3 = vqdmulhq_lane_s16(tmp11, consts, 2);
|
|
|
|
int16x8_t z11 = vaddq_s16(tmp7, z3); /* phase 5 */
|
|
int16x8_t z13 = vsubq_s16(tmp7, z3);
|
|
|
|
col5 = vaddq_s16(z13, z2); /* phase 6 */
|
|
col3 = vsubq_s16(z13, z2);
|
|
col1 = vaddq_s16(z11, z4);
|
|
col7 = vsubq_s16(z11, z4);
|
|
|
|
/* Transpose to work on columns in pass 2. */
|
|
int16x8x2_t cols_01 = vtrnq_s16(col0, col1);
|
|
int16x8x2_t cols_23 = vtrnq_s16(col2, col3);
|
|
int16x8x2_t cols_45 = vtrnq_s16(col4, col5);
|
|
int16x8x2_t cols_67 = vtrnq_s16(col6, col7);
|
|
|
|
int32x4x2_t cols_0145_l = vtrnq_s32(vreinterpretq_s32_s16(cols_01.val[0]),
|
|
vreinterpretq_s32_s16(cols_45.val[0]));
|
|
int32x4x2_t cols_0145_h = vtrnq_s32(vreinterpretq_s32_s16(cols_01.val[1]),
|
|
vreinterpretq_s32_s16(cols_45.val[1]));
|
|
int32x4x2_t cols_2367_l = vtrnq_s32(vreinterpretq_s32_s16(cols_23.val[0]),
|
|
vreinterpretq_s32_s16(cols_67.val[0]));
|
|
int32x4x2_t cols_2367_h = vtrnq_s32(vreinterpretq_s32_s16(cols_23.val[1]),
|
|
vreinterpretq_s32_s16(cols_67.val[1]));
|
|
|
|
int32x4x2_t rows_04 = vzipq_s32(cols_0145_l.val[0], cols_2367_l.val[0]);
|
|
int32x4x2_t rows_15 = vzipq_s32(cols_0145_h.val[0], cols_2367_h.val[0]);
|
|
int32x4x2_t rows_26 = vzipq_s32(cols_0145_l.val[1], cols_2367_l.val[1]);
|
|
int32x4x2_t rows_37 = vzipq_s32(cols_0145_h.val[1], cols_2367_h.val[1]);
|
|
|
|
int16x8_t row0 = vreinterpretq_s16_s32(rows_04.val[0]);
|
|
int16x8_t row1 = vreinterpretq_s16_s32(rows_15.val[0]);
|
|
int16x8_t row2 = vreinterpretq_s16_s32(rows_26.val[0]);
|
|
int16x8_t row3 = vreinterpretq_s16_s32(rows_37.val[0]);
|
|
int16x8_t row4 = vreinterpretq_s16_s32(rows_04.val[1]);
|
|
int16x8_t row5 = vreinterpretq_s16_s32(rows_15.val[1]);
|
|
int16x8_t row6 = vreinterpretq_s16_s32(rows_26.val[1]);
|
|
int16x8_t row7 = vreinterpretq_s16_s32(rows_37.val[1]);
|
|
|
|
/* Pass 2: process columns. */
|
|
|
|
tmp0 = vaddq_s16(row0, row7);
|
|
tmp7 = vsubq_s16(row0, row7);
|
|
tmp1 = vaddq_s16(row1, row6);
|
|
tmp6 = vsubq_s16(row1, row6);
|
|
tmp2 = vaddq_s16(row2, row5);
|
|
tmp5 = vsubq_s16(row2, row5);
|
|
tmp3 = vaddq_s16(row3, row4);
|
|
tmp4 = vsubq_s16(row3, row4);
|
|
|
|
/* Even part */
|
|
tmp10 = vaddq_s16(tmp0, tmp3); /* phase 2 */
|
|
tmp13 = vsubq_s16(tmp0, tmp3);
|
|
tmp11 = vaddq_s16(tmp1, tmp2);
|
|
tmp12 = vsubq_s16(tmp1, tmp2);
|
|
|
|
row0 = vaddq_s16(tmp10, tmp11); /* phase 3 */
|
|
row4 = vsubq_s16(tmp10, tmp11);
|
|
|
|
z1 = vqdmulhq_lane_s16(vaddq_s16(tmp12, tmp13), consts, 2);
|
|
row2 = vaddq_s16(tmp13, z1); /* phase 5 */
|
|
row6 = vsubq_s16(tmp13, z1);
|
|
|
|
/* Odd part */
|
|
tmp10 = vaddq_s16(tmp4, tmp5); /* phase 2 */
|
|
tmp11 = vaddq_s16(tmp5, tmp6);
|
|
tmp12 = vaddq_s16(tmp6, tmp7);
|
|
|
|
z5 = vqdmulhq_lane_s16(vsubq_s16(tmp10, tmp12), consts, 0);
|
|
z2 = vqdmulhq_lane_s16(tmp10, consts, 1);
|
|
z2 = vaddq_s16(z2, z5);
|
|
z4 = vqdmulhq_lane_s16(tmp12, consts, 3);
|
|
z5 = vaddq_s16(tmp12, z5);
|
|
z4 = vaddq_s16(z4, z5);
|
|
z3 = vqdmulhq_lane_s16(tmp11, consts, 2);
|
|
|
|
z11 = vaddq_s16(tmp7, z3); /* phase 5 */
|
|
z13 = vsubq_s16(tmp7, z3);
|
|
|
|
row5 = vaddq_s16(z13, z2); /* phase 6 */
|
|
row3 = vsubq_s16(z13, z2);
|
|
row1 = vaddq_s16(z11, z4);
|
|
row7 = vsubq_s16(z11, z4);
|
|
|
|
vst1q_s16(data + 0 * DCTSIZE, row0);
|
|
vst1q_s16(data + 1 * DCTSIZE, row1);
|
|
vst1q_s16(data + 2 * DCTSIZE, row2);
|
|
vst1q_s16(data + 3 * DCTSIZE, row3);
|
|
vst1q_s16(data + 4 * DCTSIZE, row4);
|
|
vst1q_s16(data + 5 * DCTSIZE, row5);
|
|
vst1q_s16(data + 6 * DCTSIZE, row6);
|
|
vst1q_s16(data + 7 * DCTSIZE, row7);
|
|
}
|
|
|
|
static void jsimd_idct_ifast_neon(void *dct_table, JCOEFPTR coef_block,
|
|
JSAMPROW output_buf)
|
|
{
|
|
IFAST_MULT_TYPE *quantptr = dct_table;
|
|
|
|
/* Load DCT coefficients. */
|
|
int16x8_t row0 = vld1q_s16(coef_block + 0 * DCTSIZE);
|
|
int16x8_t row1 = vld1q_s16(coef_block + 1 * DCTSIZE);
|
|
int16x8_t row2 = vld1q_s16(coef_block + 2 * DCTSIZE);
|
|
int16x8_t row3 = vld1q_s16(coef_block + 3 * DCTSIZE);
|
|
int16x8_t row4 = vld1q_s16(coef_block + 4 * DCTSIZE);
|
|
int16x8_t row5 = vld1q_s16(coef_block + 5 * DCTSIZE);
|
|
int16x8_t row6 = vld1q_s16(coef_block + 6 * DCTSIZE);
|
|
int16x8_t row7 = vld1q_s16(coef_block + 7 * DCTSIZE);
|
|
|
|
/* Load quantization table values for DC coefficients. */
|
|
int16x8_t quant_row0 = vld1q_s16(quantptr + 0 * DCTSIZE);
|
|
/* Dequantize DC coefficients. */
|
|
row0 = vmulq_s16(row0, quant_row0);
|
|
|
|
/* Construct bitmap to test if all AC coefficients are 0. */
|
|
int16x8_t bitmap = vorrq_s16(row1, row2);
|
|
bitmap = vorrq_s16(bitmap, row3);
|
|
bitmap = vorrq_s16(bitmap, row4);
|
|
bitmap = vorrq_s16(bitmap, row5);
|
|
bitmap = vorrq_s16(bitmap, row6);
|
|
bitmap = vorrq_s16(bitmap, row7);
|
|
|
|
int64_t left_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 0);
|
|
int64_t right_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 1);
|
|
|
|
/* Load IDCT conversion constants. */
|
|
const int16x4_t consts = vld1_s16(jsimd_idct_ifast_neon_consts);
|
|
|
|
if (left_ac_bitmap == 0 && right_ac_bitmap == 0) {
|
|
/* All AC coefficients are zero.
|
|
* Compute DC values and duplicate into vectors.
|
|
*/
|
|
int16x8_t dcval = row0;
|
|
row1 = dcval;
|
|
row2 = dcval;
|
|
row3 = dcval;
|
|
row4 = dcval;
|
|
row5 = dcval;
|
|
row6 = dcval;
|
|
row7 = dcval;
|
|
} else if (left_ac_bitmap == 0) {
|
|
/* AC coefficients are zero for columns 0, 1, 2, and 3.
|
|
* Use DC values for these columns.
|
|
*/
|
|
int16x4_t dcval = vget_low_s16(row0);
|
|
|
|
/* Commence regular fast IDCT computation for columns 4, 5, 6, and 7. */
|
|
|
|
/* Load quantization table. */
|
|
int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE + 4);
|
|
int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE + 4);
|
|
int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE + 4);
|
|
int16x4_t quant_row4 = vld1_s16(quantptr + 4 * DCTSIZE + 4);
|
|
int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE + 4);
|
|
int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE + 4);
|
|
int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE + 4);
|
|
|
|
/* Even part: dequantize DCT coefficients. */
|
|
int16x4_t tmp0 = vget_high_s16(row0);
|
|
int16x4_t tmp1 = vmul_s16(vget_high_s16(row2), quant_row2);
|
|
int16x4_t tmp2 = vmul_s16(vget_high_s16(row4), quant_row4);
|
|
int16x4_t tmp3 = vmul_s16(vget_high_s16(row6), quant_row6);
|
|
|
|
int16x4_t tmp10 = vadd_s16(tmp0, tmp2); /* phase 3 */
|
|
int16x4_t tmp11 = vsub_s16(tmp0, tmp2);
|
|
|
|
int16x4_t tmp13 = vadd_s16(tmp1, tmp3); /* phases 5-3 */
|
|
int16x4_t tmp1_sub_tmp3 = vsub_s16(tmp1, tmp3);
|
|
int16x4_t tmp12 = vqdmulh_lane_s16(tmp1_sub_tmp3, consts, 1);
|
|
tmp12 = vadd_s16(tmp12, tmp1_sub_tmp3);
|
|
tmp12 = vsub_s16(tmp12, tmp13);
|
|
|
|
tmp0 = vadd_s16(tmp10, tmp13); /* phase 2 */
|
|
tmp3 = vsub_s16(tmp10, tmp13);
|
|
tmp1 = vadd_s16(tmp11, tmp12);
|
|
tmp2 = vsub_s16(tmp11, tmp12);
|
|
|
|
/* Odd part: dequantize DCT coefficients. */
|
|
int16x4_t tmp4 = vmul_s16(vget_high_s16(row1), quant_row1);
|
|
int16x4_t tmp5 = vmul_s16(vget_high_s16(row3), quant_row3);
|
|
int16x4_t tmp6 = vmul_s16(vget_high_s16(row5), quant_row5);
|
|
int16x4_t tmp7 = vmul_s16(vget_high_s16(row7), quant_row7);
|
|
|
|
int16x4_t z13 = vadd_s16(tmp6, tmp5); /* phase 6 */
|
|
int16x4_t neg_z10 = vsub_s16(tmp5, tmp6);
|
|
int16x4_t z11 = vadd_s16(tmp4, tmp7);
|
|
int16x4_t z12 = vsub_s16(tmp4, tmp7);
|
|
|
|
tmp7 = vadd_s16(z11, z13); /* phase 5 */
|
|
int16x4_t z11_sub_z13 = vsub_s16(z11, z13);
|
|
tmp11 = vqdmulh_lane_s16(z11_sub_z13, consts, 1);
|
|
tmp11 = vadd_s16(tmp11, z11_sub_z13);
|
|
|
|
int16x4_t z10_add_z12 = vsub_s16(z12, neg_z10);
|
|
int16x4_t z5 = vqdmulh_lane_s16(z10_add_z12, consts, 2);
|
|
z5 = vadd_s16(z5, z10_add_z12);
|
|
tmp10 = vqdmulh_lane_s16(z12, consts, 0);
|
|
tmp10 = vadd_s16(tmp10, z12);
|
|
tmp10 = vsub_s16(tmp10, z5);
|
|
tmp12 = vqdmulh_lane_s16(neg_z10, consts, 3);
|
|
tmp12 = vadd_s16(tmp12, vadd_s16(neg_z10, neg_z10));
|
|
tmp12 = vadd_s16(tmp12, z5);
|
|
|
|
tmp6 = vsub_s16(tmp12, tmp7); /* phase 2 */
|
|
tmp5 = vsub_s16(tmp11, tmp6);
|
|
tmp4 = vadd_s16(tmp10, tmp5);
|
|
|
|
row0 = vcombine_s16(dcval, vadd_s16(tmp0, tmp7));
|
|
row7 = vcombine_s16(dcval, vsub_s16(tmp0, tmp7));
|
|
row1 = vcombine_s16(dcval, vadd_s16(tmp1, tmp6));
|
|
row6 = vcombine_s16(dcval, vsub_s16(tmp1, tmp6));
|
|
row2 = vcombine_s16(dcval, vadd_s16(tmp2, tmp5));
|
|
row5 = vcombine_s16(dcval, vsub_s16(tmp2, tmp5));
|
|
row4 = vcombine_s16(dcval, vadd_s16(tmp3, tmp4));
|
|
row3 = vcombine_s16(dcval, vsub_s16(tmp3, tmp4));
|
|
} else if (right_ac_bitmap == 0) {
|
|
/* AC coefficients are zero for columns 4, 5, 6, and 7.
|
|
* Use DC values for these columns.
|
|
*/
|
|
int16x4_t dcval = vget_high_s16(row0);
|
|
|
|
/* Commence regular fast IDCT computation for columns 0, 1, 2, and 3. */
|
|
|
|
/* Load quantization table. */
|
|
int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE);
|
|
int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE);
|
|
int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE);
|
|
int16x4_t quant_row4 = vld1_s16(quantptr + 4 * DCTSIZE);
|
|
int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE);
|
|
int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE);
|
|
int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE);
|
|
|
|
/* Even part: dequantize DCT coefficients. */
|
|
int16x4_t tmp0 = vget_low_s16(row0);
|
|
int16x4_t tmp1 = vmul_s16(vget_low_s16(row2), quant_row2);
|
|
int16x4_t tmp2 = vmul_s16(vget_low_s16(row4), quant_row4);
|
|
int16x4_t tmp3 = vmul_s16(vget_low_s16(row6), quant_row6);
|
|
|
|
int16x4_t tmp10 = vadd_s16(tmp0, tmp2); /* phase 3 */
|
|
int16x4_t tmp11 = vsub_s16(tmp0, tmp2);
|
|
|
|
int16x4_t tmp13 = vadd_s16(tmp1, tmp3); /* phases 5-3 */
|
|
int16x4_t tmp1_sub_tmp3 = vsub_s16(tmp1, tmp3);
|
|
int16x4_t tmp12 = vqdmulh_lane_s16(tmp1_sub_tmp3, consts, 1);
|
|
tmp12 = vadd_s16(tmp12, tmp1_sub_tmp3);
|
|
tmp12 = vsub_s16(tmp12, tmp13);
|
|
|
|
tmp0 = vadd_s16(tmp10, tmp13); /* phase 2 */
|
|
tmp3 = vsub_s16(tmp10, tmp13);
|
|
tmp1 = vadd_s16(tmp11, tmp12);
|
|
tmp2 = vsub_s16(tmp11, tmp12);
|
|
|
|
/* Odd part: dequantize DCT coefficients. */
|
|
int16x4_t tmp4 = vmul_s16(vget_low_s16(row1), quant_row1);
|
|
int16x4_t tmp5 = vmul_s16(vget_low_s16(row3), quant_row3);
|
|
int16x4_t tmp6 = vmul_s16(vget_low_s16(row5), quant_row5);
|
|
int16x4_t tmp7 = vmul_s16(vget_low_s16(row7), quant_row7);
|
|
|
|
int16x4_t z13 = vadd_s16(tmp6, tmp5); /* phase 6 */
|
|
int16x4_t neg_z10 = vsub_s16(tmp5, tmp6);
|
|
int16x4_t z11 = vadd_s16(tmp4, tmp7);
|
|
int16x4_t z12 = vsub_s16(tmp4, tmp7);
|
|
|
|
tmp7 = vadd_s16(z11, z13); /* phase 5 */
|
|
int16x4_t z11_sub_z13 = vsub_s16(z11, z13);
|
|
tmp11 = vqdmulh_lane_s16(z11_sub_z13, consts, 1);
|
|
tmp11 = vadd_s16(tmp11, z11_sub_z13);
|
|
|
|
int16x4_t z10_add_z12 = vsub_s16(z12, neg_z10);
|
|
int16x4_t z5 = vqdmulh_lane_s16(z10_add_z12, consts, 2);
|
|
z5 = vadd_s16(z5, z10_add_z12);
|
|
tmp10 = vqdmulh_lane_s16(z12, consts, 0);
|
|
tmp10 = vadd_s16(tmp10, z12);
|
|
tmp10 = vsub_s16(tmp10, z5);
|
|
tmp12 = vqdmulh_lane_s16(neg_z10, consts, 3);
|
|
tmp12 = vadd_s16(tmp12, vadd_s16(neg_z10, neg_z10));
|
|
tmp12 = vadd_s16(tmp12, z5);
|
|
|
|
tmp6 = vsub_s16(tmp12, tmp7); /* phase 2 */
|
|
tmp5 = vsub_s16(tmp11, tmp6);
|
|
tmp4 = vadd_s16(tmp10, tmp5);
|
|
|
|
row0 = vcombine_s16(vadd_s16(tmp0, tmp7), dcval);
|
|
row7 = vcombine_s16(vsub_s16(tmp0, tmp7), dcval);
|
|
row1 = vcombine_s16(vadd_s16(tmp1, tmp6), dcval);
|
|
row6 = vcombine_s16(vsub_s16(tmp1, tmp6), dcval);
|
|
row2 = vcombine_s16(vadd_s16(tmp2, tmp5), dcval);
|
|
row5 = vcombine_s16(vsub_s16(tmp2, tmp5), dcval);
|
|
row4 = vcombine_s16(vadd_s16(tmp3, tmp4), dcval);
|
|
row3 = vcombine_s16(vsub_s16(tmp3, tmp4), dcval);
|
|
} else {
|
|
/* Some AC coefficients are non-zero; full IDCT calculation required. */
|
|
|
|
/* Load quantization table. */
|
|
int16x8_t quant_row1 = vld1q_s16(quantptr + 1 * DCTSIZE);
|
|
int16x8_t quant_row2 = vld1q_s16(quantptr + 2 * DCTSIZE);
|
|
int16x8_t quant_row3 = vld1q_s16(quantptr + 3 * DCTSIZE);
|
|
int16x8_t quant_row4 = vld1q_s16(quantptr + 4 * DCTSIZE);
|
|
int16x8_t quant_row5 = vld1q_s16(quantptr + 5 * DCTSIZE);
|
|
int16x8_t quant_row6 = vld1q_s16(quantptr + 6 * DCTSIZE);
|
|
int16x8_t quant_row7 = vld1q_s16(quantptr + 7 * DCTSIZE);
|
|
|
|
/* Even part: dequantize DCT coefficients. */
|
|
int16x8_t tmp0 = row0;
|
|
int16x8_t tmp1 = vmulq_s16(row2, quant_row2);
|
|
int16x8_t tmp2 = vmulq_s16(row4, quant_row4);
|
|
int16x8_t tmp3 = vmulq_s16(row6, quant_row6);
|
|
|
|
int16x8_t tmp10 = vaddq_s16(tmp0, tmp2); /* phase 3 */
|
|
int16x8_t tmp11 = vsubq_s16(tmp0, tmp2);
|
|
|
|
int16x8_t tmp13 = vaddq_s16(tmp1, tmp3); /* phases 5-3 */
|
|
int16x8_t tmp1_sub_tmp3 = vsubq_s16(tmp1, tmp3);
|
|
int16x8_t tmp12 = vqdmulhq_lane_s16(tmp1_sub_tmp3, consts, 1);
|
|
tmp12 = vaddq_s16(tmp12, tmp1_sub_tmp3);
|
|
tmp12 = vsubq_s16(tmp12, tmp13);
|
|
|
|
tmp0 = vaddq_s16(tmp10, tmp13); /* phase 2 */
|
|
tmp3 = vsubq_s16(tmp10, tmp13);
|
|
tmp1 = vaddq_s16(tmp11, tmp12);
|
|
tmp2 = vsubq_s16(tmp11, tmp12);
|
|
|
|
/* Odd part: dequantize DCT coefficients. */
|
|
int16x8_t tmp4 = vmulq_s16(row1, quant_row1);
|
|
int16x8_t tmp5 = vmulq_s16(row3, quant_row3);
|
|
int16x8_t tmp6 = vmulq_s16(row5, quant_row5);
|
|
int16x8_t tmp7 = vmulq_s16(row7, quant_row7);
|
|
|
|
int16x8_t z13 = vaddq_s16(tmp6, tmp5); /* phase 6 */
|
|
int16x8_t neg_z10 = vsubq_s16(tmp5, tmp6);
|
|
int16x8_t z11 = vaddq_s16(tmp4, tmp7);
|
|
int16x8_t z12 = vsubq_s16(tmp4, tmp7);
|
|
|
|
tmp7 = vaddq_s16(z11, z13); /* phase 5 */
|
|
int16x8_t z11_sub_z13 = vsubq_s16(z11, z13);
|
|
tmp11 = vqdmulhq_lane_s16(z11_sub_z13, consts, 1);
|
|
tmp11 = vaddq_s16(tmp11, z11_sub_z13);
|
|
|
|
int16x8_t z10_add_z12 = vsubq_s16(z12, neg_z10);
|
|
int16x8_t z5 = vqdmulhq_lane_s16(z10_add_z12, consts, 2);
|
|
z5 = vaddq_s16(z5, z10_add_z12);
|
|
tmp10 = vqdmulhq_lane_s16(z12, consts, 0);
|
|
tmp10 = vaddq_s16(tmp10, z12);
|
|
tmp10 = vsubq_s16(tmp10, z5);
|
|
tmp12 = vqdmulhq_lane_s16(neg_z10, consts, 3);
|
|
tmp12 = vaddq_s16(tmp12, vaddq_s16(neg_z10, neg_z10));
|
|
tmp12 = vaddq_s16(tmp12, z5);
|
|
|
|
tmp6 = vsubq_s16(tmp12, tmp7); /* phase 2 */
|
|
tmp5 = vsubq_s16(tmp11, tmp6);
|
|
tmp4 = vaddq_s16(tmp10, tmp5);
|
|
|
|
row0 = vaddq_s16(tmp0, tmp7);
|
|
row7 = vsubq_s16(tmp0, tmp7);
|
|
row1 = vaddq_s16(tmp1, tmp6);
|
|
row6 = vsubq_s16(tmp1, tmp6);
|
|
row2 = vaddq_s16(tmp2, tmp5);
|
|
row5 = vsubq_s16(tmp2, tmp5);
|
|
row4 = vaddq_s16(tmp3, tmp4);
|
|
row3 = vsubq_s16(tmp3, tmp4);
|
|
}
|
|
|
|
/* Transpose rows to work on columns in pass 2. */
|
|
int16x8x2_t rows_01 = vtrnq_s16(row0, row1);
|
|
int16x8x2_t rows_23 = vtrnq_s16(row2, row3);
|
|
int16x8x2_t rows_45 = vtrnq_s16(row4, row5);
|
|
int16x8x2_t rows_67 = vtrnq_s16(row6, row7);
|
|
|
|
int32x4x2_t rows_0145_l = vtrnq_s32(vreinterpretq_s32_s16(rows_01.val[0]),
|
|
vreinterpretq_s32_s16(rows_45.val[0]));
|
|
int32x4x2_t rows_0145_h = vtrnq_s32(vreinterpretq_s32_s16(rows_01.val[1]),
|
|
vreinterpretq_s32_s16(rows_45.val[1]));
|
|
int32x4x2_t rows_2367_l = vtrnq_s32(vreinterpretq_s32_s16(rows_23.val[0]),
|
|
vreinterpretq_s32_s16(rows_67.val[0]));
|
|
int32x4x2_t rows_2367_h = vtrnq_s32(vreinterpretq_s32_s16(rows_23.val[1]),
|
|
vreinterpretq_s32_s16(rows_67.val[1]));
|
|
|
|
int32x4x2_t cols_04 = vzipq_s32(rows_0145_l.val[0], rows_2367_l.val[0]);
|
|
int32x4x2_t cols_15 = vzipq_s32(rows_0145_h.val[0], rows_2367_h.val[0]);
|
|
int32x4x2_t cols_26 = vzipq_s32(rows_0145_l.val[1], rows_2367_l.val[1]);
|
|
int32x4x2_t cols_37 = vzipq_s32(rows_0145_h.val[1], rows_2367_h.val[1]);
|
|
|
|
int16x8_t col0 = vreinterpretq_s16_s32(cols_04.val[0]);
|
|
int16x8_t col1 = vreinterpretq_s16_s32(cols_15.val[0]);
|
|
int16x8_t col2 = vreinterpretq_s16_s32(cols_26.val[0]);
|
|
int16x8_t col3 = vreinterpretq_s16_s32(cols_37.val[0]);
|
|
int16x8_t col4 = vreinterpretq_s16_s32(cols_04.val[1]);
|
|
int16x8_t col5 = vreinterpretq_s16_s32(cols_15.val[1]);
|
|
int16x8_t col6 = vreinterpretq_s16_s32(cols_26.val[1]);
|
|
int16x8_t col7 = vreinterpretq_s16_s32(cols_37.val[1]);
|
|
|
|
/* 1-D IDCT, pass 2 */
|
|
|
|
/* Even part */
|
|
int16x8_t tmp10 = vaddq_s16(col0, col4);
|
|
int16x8_t tmp11 = vsubq_s16(col0, col4);
|
|
|
|
int16x8_t tmp13 = vaddq_s16(col2, col6);
|
|
int16x8_t col2_sub_col6 = vsubq_s16(col2, col6);
|
|
int16x8_t tmp12 = vqdmulhq_lane_s16(col2_sub_col6, consts, 1);
|
|
tmp12 = vaddq_s16(tmp12, col2_sub_col6);
|
|
tmp12 = vsubq_s16(tmp12, tmp13);
|
|
|
|
int16x8_t tmp0 = vaddq_s16(tmp10, tmp13);
|
|
int16x8_t tmp3 = vsubq_s16(tmp10, tmp13);
|
|
int16x8_t tmp1 = vaddq_s16(tmp11, tmp12);
|
|
int16x8_t tmp2 = vsubq_s16(tmp11, tmp12);
|
|
|
|
/* Odd part */
|
|
int16x8_t z13 = vaddq_s16(col5, col3);
|
|
int16x8_t neg_z10 = vsubq_s16(col3, col5);
|
|
int16x8_t z11 = vaddq_s16(col1, col7);
|
|
int16x8_t z12 = vsubq_s16(col1, col7);
|
|
|
|
int16x8_t tmp7 = vaddq_s16(z11, z13); /* phase 5 */
|
|
int16x8_t z11_sub_z13 = vsubq_s16(z11, z13);
|
|
tmp11 = vqdmulhq_lane_s16(z11_sub_z13, consts, 1);
|
|
tmp11 = vaddq_s16(tmp11, z11_sub_z13);
|
|
|
|
int16x8_t z10_add_z12 = vsubq_s16(z12, neg_z10);
|
|
int16x8_t z5 = vqdmulhq_lane_s16(z10_add_z12, consts, 2);
|
|
z5 = vaddq_s16(z5, z10_add_z12);
|
|
tmp10 = vqdmulhq_lane_s16(z12, consts, 0);
|
|
tmp10 = vaddq_s16(tmp10, z12);
|
|
tmp10 = vsubq_s16(tmp10, z5);
|
|
tmp12 = vqdmulhq_lane_s16(neg_z10, consts, 3);
|
|
tmp12 = vaddq_s16(tmp12, vaddq_s16(neg_z10, neg_z10));
|
|
tmp12 = vaddq_s16(tmp12, z5);
|
|
|
|
int16x8_t tmp6 = vsubq_s16(tmp12, tmp7); /* phase 2 */
|
|
int16x8_t tmp5 = vsubq_s16(tmp11, tmp6);
|
|
int16x8_t tmp4 = vaddq_s16(tmp10, tmp5);
|
|
|
|
col0 = vaddq_s16(tmp0, tmp7);
|
|
col7 = vsubq_s16(tmp0, tmp7);
|
|
col1 = vaddq_s16(tmp1, tmp6);
|
|
col6 = vsubq_s16(tmp1, tmp6);
|
|
col2 = vaddq_s16(tmp2, tmp5);
|
|
col5 = vsubq_s16(tmp2, tmp5);
|
|
col4 = vaddq_s16(tmp3, tmp4);
|
|
col3 = vsubq_s16(tmp3, tmp4);
|
|
|
|
/* Scale down by a factor of 8, narrowing to 8-bit. */
|
|
int8x16_t cols_01_s8 = vcombine_s8(vqshrn_n_s16(col0, PASS1_BITS + 3),
|
|
vqshrn_n_s16(col1, PASS1_BITS + 3));
|
|
int8x16_t cols_45_s8 = vcombine_s8(vqshrn_n_s16(col4, PASS1_BITS + 3),
|
|
vqshrn_n_s16(col5, PASS1_BITS + 3));
|
|
int8x16_t cols_23_s8 = vcombine_s8(vqshrn_n_s16(col2, PASS1_BITS + 3),
|
|
vqshrn_n_s16(col3, PASS1_BITS + 3));
|
|
int8x16_t cols_67_s8 = vcombine_s8(vqshrn_n_s16(col6, PASS1_BITS + 3),
|
|
vqshrn_n_s16(col7, PASS1_BITS + 3));
|
|
/* Clamp to range [0-255]. */
|
|
uint8x16_t cols_01 =
|
|
vreinterpretq_u8_s8
|
|
(vaddq_s8(cols_01_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE))));
|
|
uint8x16_t cols_45 =
|
|
vreinterpretq_u8_s8
|
|
(vaddq_s8(cols_45_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE))));
|
|
uint8x16_t cols_23 =
|
|
vreinterpretq_u8_s8
|
|
(vaddq_s8(cols_23_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE))));
|
|
uint8x16_t cols_67 =
|
|
vreinterpretq_u8_s8
|
|
(vaddq_s8(cols_67_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE))));
|
|
|
|
/* Transpose block to prepare for store. */
|
|
uint32x4x2_t cols_0415 = vzipq_u32(vreinterpretq_u32_u8(cols_01),
|
|
vreinterpretq_u32_u8(cols_45));
|
|
uint32x4x2_t cols_2637 = vzipq_u32(vreinterpretq_u32_u8(cols_23),
|
|
vreinterpretq_u32_u8(cols_67));
|
|
|
|
uint8x16x2_t cols_0145 = vtrnq_u8(vreinterpretq_u8_u32(cols_0415.val[0]),
|
|
vreinterpretq_u8_u32(cols_0415.val[1]));
|
|
uint8x16x2_t cols_2367 = vtrnq_u8(vreinterpretq_u8_u32(cols_2637.val[0]),
|
|
vreinterpretq_u8_u32(cols_2637.val[1]));
|
|
uint16x8x2_t rows_0426 = vtrnq_u16(vreinterpretq_u16_u8(cols_0145.val[0]),
|
|
vreinterpretq_u16_u8(cols_2367.val[0]));
|
|
uint16x8x2_t rows_1537 = vtrnq_u16(vreinterpretq_u16_u8(cols_0145.val[1]),
|
|
vreinterpretq_u16_u8(cols_2367.val[1]));
|
|
|
|
uint8x16_t rows_04 = vreinterpretq_u8_u16(rows_0426.val[0]);
|
|
uint8x16_t rows_15 = vreinterpretq_u8_u16(rows_1537.val[0]);
|
|
uint8x16_t rows_26 = vreinterpretq_u8_u16(rows_0426.val[1]);
|
|
uint8x16_t rows_37 = vreinterpretq_u8_u16(rows_1537.val[1]);
|
|
|
|
JSAMPROW outptr0 = output_buf + DCTSIZE * 0;
|
|
JSAMPROW outptr1 = output_buf + DCTSIZE * 1;
|
|
JSAMPROW outptr2 = output_buf + DCTSIZE * 2;
|
|
JSAMPROW outptr3 = output_buf + DCTSIZE * 3;
|
|
JSAMPROW outptr4 = output_buf + DCTSIZE * 4;
|
|
JSAMPROW outptr5 = output_buf + DCTSIZE * 5;
|
|
JSAMPROW outptr6 = output_buf + DCTSIZE * 6;
|
|
JSAMPROW outptr7 = output_buf + DCTSIZE * 7;
|
|
|
|
/* Store DCT block to memory. */
|
|
vst1q_lane_u64((uint64_t *)outptr0, vreinterpretq_u64_u8(rows_04), 0);
|
|
vst1q_lane_u64((uint64_t *)outptr1, vreinterpretq_u64_u8(rows_15), 0);
|
|
vst1q_lane_u64((uint64_t *)outptr2, vreinterpretq_u64_u8(rows_26), 0);
|
|
vst1q_lane_u64((uint64_t *)outptr3, vreinterpretq_u64_u8(rows_37), 0);
|
|
vst1q_lane_u64((uint64_t *)outptr4, vreinterpretq_u64_u8(rows_04), 1);
|
|
vst1q_lane_u64((uint64_t *)outptr5, vreinterpretq_u64_u8(rows_15), 1);
|
|
vst1q_lane_u64((uint64_t *)outptr6, vreinterpretq_u64_u8(rows_26), 1);
|
|
vst1q_lane_u64((uint64_t *)outptr7, vreinterpretq_u64_u8(rows_37), 1);
|
|
}
|
|
|
|
static int flss(uint16_t val) {
|
|
int bit;
|
|
|
|
bit = 16;
|
|
|
|
if (!val)
|
|
return 0;
|
|
|
|
if (!(val & 0xff00)) {
|
|
bit -= 8;
|
|
val <<= 8;
|
|
}
|
|
if (!(val & 0xf000)) {
|
|
bit -= 4;
|
|
val <<= 4;
|
|
}
|
|
if (!(val & 0xc000)) {
|
|
bit -= 2;
|
|
val <<= 2;
|
|
}
|
|
if (!(val & 0x8000)) {
|
|
bit -= 1;
|
|
val <<= 1;
|
|
}
|
|
|
|
return bit;
|
|
}
|
|
|
|
static int compute_reciprocal(uint16_t divisor, DCTELEM *dtbl) {
|
|
UDCTELEM2 fq, fr;
|
|
UDCTELEM c;
|
|
int b, r;
|
|
|
|
if (divisor == 1) {
|
|
/* divisor == 1 means unquantized, so these reciprocal/correction/shift
|
|
* values will cause the C quantization algorithm to act like the
|
|
* identity function. Since only the C quantization algorithm is used in
|
|
* these cases, the scale value is irrelevant.
|
|
*/
|
|
dtbl[DCTSIZE2 * 0] = (DCTELEM)1; /* reciprocal */
|
|
dtbl[DCTSIZE2 * 1] = (DCTELEM)0; /* correction */
|
|
dtbl[DCTSIZE2 * 2] = (DCTELEM)1; /* scale */
|
|
dtbl[DCTSIZE2 * 3] = -(DCTELEM)(sizeof(DCTELEM) * 8); /* shift */
|
|
return 0;
|
|
}
|
|
|
|
b = flss(divisor) - 1;
|
|
r = sizeof(DCTELEM) * 8 + b;
|
|
|
|
fq = ((UDCTELEM2)1 << r) / divisor;
|
|
fr = ((UDCTELEM2)1 << r) % divisor;
|
|
|
|
c = divisor / 2; /* for rounding */
|
|
|
|
if (fr == 0) { /* divisor is power of two */
|
|
/* fq will be one bit too large to fit in DCTELEM, so adjust */
|
|
fq >>= 1;
|
|
r--;
|
|
} else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */
|
|
c++;
|
|
} else { /* fractional part is > 0.5 */
|
|
fq++;
|
|
}
|
|
|
|
dtbl[DCTSIZE2 * 0] = (DCTELEM)fq; /* reciprocal */
|
|
dtbl[DCTSIZE2 * 1] = (DCTELEM)c; /* correction + roundfactor */
|
|
#ifdef WITH_SIMD
|
|
dtbl[DCTSIZE2 * 2] = (DCTELEM)(1 << (sizeof(DCTELEM) * 8 * 2 - r)); /* scale */
|
|
#else
|
|
dtbl[DCTSIZE2 * 2] = 1;
|
|
#endif
|
|
dtbl[DCTSIZE2 * 3] = (DCTELEM)r - sizeof(DCTELEM) * 8; /* shift */
|
|
|
|
if (r <= 16) return 0;
|
|
else return 1;
|
|
}
|
|
|
|
#define DESCALE(x, n) RIGHT_SHIFT(x, n)
|
|
|
|
|
|
/* Multiply a DCTELEM variable by an JLONG constant, and immediately
|
|
* descale to yield a DCTELEM result.
|
|
*/
|
|
|
|
#define MULTIPLY(var, const) ((DCTELEM)DESCALE((var) * (const), CONST_BITS))
|
|
#define MULTIPLY16V16(var1, var2) ((var1) * (var2))
|
|
|
|
static DCTELEM std_luminance_quant_tbl[DCTSIZE2] = {
|
|
16, 11, 10, 16, 24, 40, 51, 61,
|
|
12, 12, 14, 19, 26, 58, 60, 55,
|
|
14, 13, 16, 24, 40, 57, 69, 56,
|
|
14, 17, 22, 29, 51, 87, 80, 62,
|
|
18, 22, 37, 56, 68, 109, 103, 77,
|
|
24, 35, 55, 64, 81, 104, 113, 92,
|
|
49, 64, 78, 87, 103, 121, 120, 101,
|
|
72, 92, 95, 98, 112, 100, 103, 99
|
|
};
|
|
|
|
static int jpeg_quality_scaling(int quality)
|
|
/* Convert a user-specified quality rating to a percentage scaling factor
|
|
* for an underlying quantization table, using our recommended scaling curve.
|
|
* The input 'quality' factor should be 0 (terrible) to 100 (very good).
|
|
*/
|
|
{
|
|
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
|
|
if (quality <= 0) quality = 1;
|
|
if (quality > 100) quality = 100;
|
|
|
|
/* The basic table is used as-is (scaling 100) for a quality of 50.
|
|
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
|
|
* note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
|
|
* to make all the table entries 1 (hence, minimum quantization loss).
|
|
* Qualities 1..50 are converted to scaling percentage 5000/Q.
|
|
*/
|
|
if (quality < 50)
|
|
quality = 5000 / quality;
|
|
else
|
|
quality = 200 - quality * 2;
|
|
|
|
return quality;
|
|
}
|
|
|
|
static void jpeg_add_quant_table(DCTELEM *qtable, DCTELEM *basicTable, int scale_factor, bool forceBaseline)
|
|
/* Define a quantization table equal to the basic_table times
|
|
* a scale factor (given as a percentage).
|
|
* If force_baseline is TRUE, the computed quantization table entries
|
|
* are limited to 1..255 for JPEG baseline compatibility.
|
|
*/
|
|
{
|
|
int i;
|
|
long temp;
|
|
|
|
for (i = 0; i < DCTSIZE2; i++) {
|
|
temp = ((long)basicTable[i] * scale_factor + 50L) / 100L;
|
|
/* limit the values to the valid range */
|
|
if (temp <= 0L) temp = 1L;
|
|
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
|
|
if (forceBaseline && temp > 255L)
|
|
temp = 255L; /* limit to baseline range if requested */
|
|
qtable[i] = (uint16_t)temp;
|
|
}
|
|
}
|
|
|
|
static void jpeg_set_quality(DCTELEM *qtable, int quality)
|
|
/* Set or change the 'quality' (quantization) setting, using default tables.
|
|
* This is the standard quality-adjusting entry point for typical user
|
|
* interfaces; only those who want detailed control over quantization tables
|
|
* would use the preceding three routines directly.
|
|
*/
|
|
{
|
|
/* Convert user 0-100 rating to percentage scaling */
|
|
quality = jpeg_quality_scaling(quality);
|
|
|
|
/* Set up standard quality tables */
|
|
jpeg_add_quant_table(qtable, std_luminance_quant_tbl, quality, false);
|
|
}
|
|
|
|
static void getDivisors(DCTELEM *dtbl, DCTELEM *qtable) {
|
|
#define CONST_BITS 14
|
|
#define RIGHT_SHIFT(x, shft) ((x) >> (shft))
|
|
|
|
static const int16_t aanscales[DCTSIZE2] = {
|
|
/* precomputed values scaled up by 14 bits */
|
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
|
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
|
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
|
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
|
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
|
};
|
|
|
|
for (int i = 0; i < DCTSIZE2; i++) {
|
|
if (!compute_reciprocal(
|
|
DESCALE(MULTIPLY16V16((JLONG)qtable[i],
|
|
(JLONG)aanscales[i]),
|
|
CONST_BITS - 3), &dtbl[i])) {
|
|
//fdct->quantize = quantize;
|
|
printf("here\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
static void quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace)
|
|
{
|
|
int i;
|
|
DCTELEM temp;
|
|
JCOEFPTR output_ptr = coef_block;
|
|
|
|
UDCTELEM recip, corr;
|
|
int shift;
|
|
UDCTELEM2 product;
|
|
|
|
for (i = 0; i < DCTSIZE2; i++) {
|
|
temp = workspace[i];
|
|
recip = divisors[i + DCTSIZE2 * 0];
|
|
corr = divisors[i + DCTSIZE2 * 1];
|
|
shift = divisors[i + DCTSIZE2 * 3];
|
|
|
|
if (temp < 0) {
|
|
temp = -temp;
|
|
product = (UDCTELEM2)(temp + corr) * recip;
|
|
product >>= shift + sizeof(DCTELEM) * 8;
|
|
temp = (DCTELEM)product;
|
|
temp = -temp;
|
|
} else {
|
|
product = (UDCTELEM2)(temp + corr) * recip;
|
|
product >>= shift + sizeof(DCTELEM) * 8;
|
|
temp = (DCTELEM)product;
|
|
}
|
|
output_ptr[i] = (JCOEF)temp;
|
|
}
|
|
}
|
|
|
|
NSData *generateForwardDctData(int quality) {
|
|
NSMutableData *divisors = [[NSMutableData alloc] initWithLength:DCTSIZE2 * 4 * sizeof(DCTELEM)];
|
|
|
|
DCTELEM qtable[DCTSIZE2];
|
|
jpeg_set_quality(qtable, quality);
|
|
|
|
getDivisors((DCTELEM *)divisors.mutableBytes, qtable);
|
|
|
|
return divisors;
|
|
}
|
|
|
|
NSData *generateInverseDctData(int quality) {
|
|
NSMutableData *divisors = [[NSMutableData alloc] initWithLength:DCTSIZE2 * sizeof(IFAST_MULT_TYPE)];
|
|
IFAST_MULT_TYPE *ifmtbl = (IFAST_MULT_TYPE *)divisors.mutableBytes;
|
|
|
|
DCTELEM qtable[DCTSIZE2];
|
|
jpeg_set_quality(qtable, quality);
|
|
|
|
#define CONST_BITS 14
|
|
static const int16_t aanscales[DCTSIZE2] = {
|
|
/* precomputed values scaled up by 14 bits */
|
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
|
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
|
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
|
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
|
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
|
};
|
|
|
|
for (int i = 0; i < DCTSIZE2; i++) {
|
|
ifmtbl[i] = (IFAST_MULT_TYPE)
|
|
DESCALE(MULTIPLY16V16((JLONG)qtable[i],
|
|
(JLONG)aanscales[i]),
|
|
CONST_BITS - IFAST_SCALE_BITS);
|
|
}
|
|
|
|
return divisors;
|
|
}
|
|
|
|
static const int zigZagInv[DCTSIZE2] = {
|
|
0,1,8,16,9,2,3,10,
|
|
17,24,32,25,18,11,4,5,
|
|
12,19,26,33,40,48,41,34,
|
|
27,20,13,6,7,14,21,28,
|
|
35,42,49,56,57,50,43,36,
|
|
29,22,15,23,30,37,44,51,
|
|
58,59,52,45,38,31,39,46,
|
|
53,60,61,54,47,55,62,63
|
|
};
|
|
|
|
static const int zigZag[DCTSIZE2] = {
|
|
0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63
|
|
};
|
|
|
|
void performForwardDct(uint8_t const *pixels, int16_t *coefficients, int width, int height, int bytesPerRow, NSData *dctData) {
|
|
DCTELEM *divisors = (DCTELEM *)dctData.bytes;
|
|
|
|
DCTELEM block[DCTSIZE2];
|
|
JCOEF coefBlock[DCTSIZE2];
|
|
|
|
for (int y = 0; y < height; y += DCTSIZE) {
|
|
for (int x = 0; x < width; x += DCTSIZE) {
|
|
for (int blockY = 0; blockY < DCTSIZE; blockY++) {
|
|
for (int blockX = 0; blockX < DCTSIZE; blockX++) {
|
|
block[blockY * DCTSIZE + blockX] = ((DCTELEM)pixels[(y + blockY) * bytesPerRow + (x + blockX)]) - CENTERJSAMPLE;
|
|
}
|
|
}
|
|
|
|
jsimd_fdct_ifast_neon(block);
|
|
|
|
quantize(coefBlock, divisors, block);
|
|
|
|
for (int blockY = 0; blockY < DCTSIZE; blockY++) {
|
|
for (int blockX = 0; blockX < DCTSIZE; blockX++) {
|
|
coefficients[(y + blockY) * bytesPerRow + (x + blockX)] = coefBlock[zigZagInv[blockY * DCTSIZE + blockX]];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void performInverseDct(int16_t const *coefficients, uint8_t *pixels, int width, int height, int coefficientsPerRow, int bytesPerRow, NSData *idctData) {
|
|
IFAST_MULT_TYPE *ifmtbl = (IFAST_MULT_TYPE *)idctData.bytes;
|
|
|
|
DCTELEM coefficientBlock[DCTSIZE2];
|
|
JSAMPLE pixelBlock[DCTSIZE2];
|
|
|
|
for (int y = 0; y < height; y += DCTSIZE) {
|
|
for (int x = 0; x < width; x += DCTSIZE) {
|
|
for (int blockY = 0; blockY < DCTSIZE; blockY++) {
|
|
for (int blockX = 0; blockX < DCTSIZE; blockX++) {
|
|
coefficientBlock[zigZag[blockY * DCTSIZE + blockX]] = coefficients[(y + blockY) * coefficientsPerRow + (x + blockX)];
|
|
}
|
|
}
|
|
|
|
jsimd_idct_ifast_neon(ifmtbl, coefficientBlock, pixelBlock);
|
|
|
|
for (int blockY = 0; blockY < DCTSIZE; blockY++) {
|
|
for (int blockX = 0; blockX < DCTSIZE; blockX++) {
|
|
pixels[(y + blockY) * bytesPerRow + (x + blockX)] = pixelBlock[blockY * DCTSIZE + blockX];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|